高级检索

超导量子计算系统中的容错技术

陈子杰, 孙麓岩, 邹长铃

陈子杰, 孙麓岩, 邹长铃. 超导量子计算系统中的容错技术[J]. 物理, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103
引用本文: 陈子杰, 孙麓岩, 邹长铃. 超导量子计算系统中的容错技术[J]. 物理, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103
CHEN Zi-Jie, SUN Lu-Yan, ZOU Chang-Ling. Quantum fault tolerance technology based on superconducting quantum systems[J]. PHYSICS, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103
Citation: CHEN Zi-Jie, SUN Lu-Yan, ZOU Chang-Ling. Quantum fault tolerance technology based on superconducting quantum systems[J]. PHYSICS, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103

超导量子计算系统中的容错技术

详细信息
    通讯作者:

    孙麓岩,email:luyansun@tsinghua.edu.cn

    邹长铃,email:clzou321@ustc.edu.cn

Quantum fault tolerance technology based on superconducting quantum systems

  • 摘要: 随着超导系统中的量子控制技术日益成熟,量子纠错技术也在不断发展。最近,已有一些平台实现了超越量子纠错盈亏平衡点的里程碑式突破。然而,要实现最终目标——容错量子计算,仍需要拓展系统的维度并进一步压制噪声。文章以超导量子系统为例,首先介绍了四种实现容错错误症状测量的思路;以此为基础,讨论了实现容错量子计算的三个关键阶段以及各阶段所面临的挑战,包括超越盈亏平衡点、达到容错阈值和实现完备逻辑门操作。为了实现这些目标,将按照连通性从低到高归纳三种可能的拓展系统规模的方案。此外,还总结了实验上纠错技术的进展以及对连通性的探索,最后讨论当前关键的研究问题。
    Abstract: With the improvement of quantum control technology in superconducting systems, quantum error correction has seen rapid development. Recently, significant breakthroughs have been achieved on various platforms, even surpassing the break-even point of quantum error correction. However, to reach the final goal of fault tolerant quantum computation, it is crucial to further suppress the error through scaling up quantum systems. In this article we focus on superconducting quantum systems and present four approaches for implementing fault-tolerant error syndrome measurements. We then discuss the three key stages in achieving fault-tolerant quantum computation and the corresponding challenges at each stage. These challenges include surpassing the break-even point, reaching the fault-tolerant threshold, and implementing universal logical gates. To accomplish these goals, we classify three potential scaling-up schemes based on different forms of connectivity. We then summarize the experimental progress in quantum error correction and the exploration of connectivity. Finally, we address three key problems in this field.
  • [1]

    Preskill J. 2021, arXiv:2106.10522

    [2]

    Arute F, Arya K, Babbush R et al. Nature, 2019, 574(7779):505

    [3]

    Wu Y L, Bao W S, Cao S R et al. Phys. Rev. Lett., 2021, 127(18):180501

    [4]

    Zhang X, Jiang W J, Deng J F et al. Nature, 2022, 607:468

    [5]

    Shi Y H, Liu Y, Zhang Y R et al. Phys. Rev. Lett., 2023, 131(8):080401

    [6]

    Ni Z C, Li S, Deng X W et al. Nature, 2023, 616(7955):56

    [7]

    Acharya R, Aleiner I, Allen R et al. Nature, 2023, 614(7949):676

    [8]

    Cao S R, Wu B J, Chen F S et al. Nature, 2023, 619(7971):738

    [9]

    Li X G, Xu H K, Wang J H et al. 2023, arXiv:2301.12138

    [10]

    Tao Z Y, Huang W H, Niu J J et al. 2023, arXiv:2303.04582

    [11]

    Sheng C, Hou J Y, He X D et al. Phys. Rev. Lett., 2022, 128(8):083202

    [12]

    Evered S J, Bluvstein D, Kalinowski M et al. Nature, 2023, 622:268

    [13]

    Ryan-Anderson C, Bohnet J G, Lee K et al. Physical Review X, 2021, 11(4):041058

    [14]

    Zhang M X, Yuan X X, Li Y et al. Phys. Rev. Lett., 2022, 129(25):250501

    [15]

    Chen W T, Lu Y, Zhang S N et al. Nature Physics, 2023, 19:877

    [16]

    Deng Y H, Gu Y C, Liu H L et al. Phys. Rev. Lett., 2023, 131:150601

    [17]

    Shor P W. Physical Review A, 1995, 52(4):R2493

    [18]

    Chen Z J, Sun L Y, Zou C L. Science Bulletin, 2023, 68:961

    [19]

    Kim J S, Bishop L S, Córcoles A D et al. Physical Review A, 2021, 104(2):022609

    [20]

    Catelani G, Nigg S E, Girvin S M et al. Physical Review B, 2012, 86(18):184514

    [21]

    Xu Y, Chu J, Yuan J H et al. Phys. Rev. Lett., 2020, 125(24):240503

    [22]

    Ding Y S, Chong F T. Quantum Computer Systems:Research for Noisy Intermediate-scale Quantum Computers. Springer Nature, 2022

    [23]

    Wang C L, Li X G, Xu H K et al. npj Quantum Information, 2022, 8(1):3

    [24]

    Wu R B, Ding H J, Dong D Y et al. Physical Review A, 2019, 99(4):042327

    [25]

    Hashim A, Naik R K, Morvan A et al. Physical Review X, 2021, 11(4):041039

    [26]

    Endo S, Cai Z Y, Benjamin S C et al. Journal of the Physical Society of Japan, 2021, 90(3):032001

    [27]

    Girvin S M. SciPost Physics Lecture Notes, 2023:070

    [28]

    Terhal B M. Reviews of Modern Physics, 2015, 87(2):307

    [29]

    Zhao Y W, Ye Y S, Huang H L et al. Phys. Rev. Lett., 2022, 129(3):030501

    [30]

    Fowler A G. Physical Review A, 2011, 83(4):042310

    [31]

    Teoh J D, Winkel P, Babla H K et al. Proceedings of the National Academy of Sciences, 2023, 120(41):e2221736120

    [32]

    Gong M, Yuan X, Wang S Y et al. National Science Review, 2022, 9(1):nwab011

    [33]

    Breuckmann N P, Eberhardt J N. PRX Quantum, 2021, 2(4):040101

    [34]

    Nielsen M A, Chuang I. Quantum Computation and Quantum Information. Cambridge, 2002

    [35]

    Gottesman D. 1997, arXiv:quant-ph/9705052

    [36]

    Bombín H. 2013, arXiv:1311.0277

    [37]

    Cai W Z, Ma Y W, Wang W T et al. Fundamental Research, 2021, 1(1):50

    [38]

    Leghtas Z, Kirchmair G, Vlastakis B et al. Phys. Rev. Lett., 2013, 111(12):120501

    [39]

    Michael M H, Silveri M, Brierley R T et al. Physical Review X, 2016, 6(3):031006

    [40]

    Hu L, Ma Y W, Cai W Z et al. Nature Physics, 2019, 15(5):503

    [41]

    Gottesman D, Kitaev A, Preskill J. Physical Review A, 2001, 64(1):012310

    [42]

    Flühmann C, Nguyen T L, Marinelli M et al. Nature, 2019, 566(7745):513

    [43]

    Mezzadri M, Chiesa A, Lepori L et al. 2023, arXiv:2307.10761

    [44]

    Darmawan A S, Brown B J, Grimsmo A L et al. PRX Quantum, 2021, 2(3):030345

    [45]

    Shor P W. Fault-tolerant Quantum Computation. In:Proceedings of 37th Conference on Foundations of Computer Science, IEEE, 1996. PP. 56-65

    [46]

    Wang D S, Fowler A G, Hollenberg L C L. Physical Review A, 2011, 83(2):020302

    [47]

    Fowler A G, Mariantoni M, Martinis J M et al. Physical Review A, 2012, 86(3):032324

    [48]

    Gottesman D. An Introduction to Quantum Error Correction and Fault-tolerant Quantum Computation. In:Quantum Information Science and its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, 2010, 68:13

    [49]

    Knill E. 2004, arXiv:quant-ph/0402171

    [50]

    Steane A M. Phys. Rev. Lett., 1997, 78(11):2252

    [51]

    Dawson C M, Haselgrove H L, Nielsen M A. Physical Review A, 2006, 73(5):052306

    [52]

    Chao R, Reichardt B W. npj Quantum Information, 2018, 4(1):42

    [53]

    Chao R, Reichardt B W. Phys. Rev. Lett., 2018, 121(5):050502

    [54]

    Rosenblum S, Reinhold P, Mirrahimi M et al. Science, 2018, 361(6399):266

    [55]

    Ofek N, Petrenko A, Heeres R et al. Nature, 2016, 536(7617):441

    [56]

    Sivak V V,Eickbusch A,Royer B et al. Nature,2023,616(7955):50

    [57]

    Wilen C D, Abdullah S,Kurinsky N A et al. Nature, 2021, 594(7863):369

    [58]

    Martinis J M. npj Quantum Information, 2021, 7(1):90

    [59]

    McEwen M, Faoro L, Arya K et al. Nature Physics, 2022, 18(1):107

    [60]

    Xu Q, Seif A, Yan H X et al. Phys. Rev. Lett., 2022, 129(24):240502

    [61]

    Suzuki Y,Sugiyama T,Arai T et al. Q3de:A Fault-tolerant Quantum Computer Architecture for Multi-bit Burst Errors by Cosmic Rays. In:202255th IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE, 2022. pp.1110-1125

    [62]

    Siegel A, Strikis A, Flatters T et al. Quantum, 2023, 7:1065

    [63]

    Battistel F, Chamberland C, Johar K et al. 2023, arXiv:2303. 00054

    [64]

    Fowler A G, Whiteside A C, Hollenberg L C L. Physical Review A, 2012, 86(4):042313

    [65]

    Gicev S, Hollenberg L C L, Usman M. Quantum, 2023, 7:1058

    [66]

    Rosenberg D, Kim D, Das R et al. npj Quantum Information, 2017, 3(1):42

    [67]

    Eastin B, Knill E. Phys. Rev. Lett., 2009, 102(11):110502

    [68]

    Bravyi S, Kitaev A. Physical Review A, 2005, 71(2):022316

    [69]

    Meier A M, Eastin B, Knill E. 2012, arXiv:1204.4221

    [70]

    Haah J, Hastings M B. Quantum, 2018, 2:71

    [71]

    Campbell E T, Terhal B M, Vuillot C. Nature, 2017, 549(7671):172

    [72]

    Paetznick A,Reichardt B W. Phys. Rev. Lett.,2013,11(9):090505

    [73]

    Chamberland C, Cross A W. Quantum, 2019, 3:143

    [74]

    Bacon D. Physical Review A, 2006, 73(1):012340

    [75]

    Nickerson N H, Li Y, Benjamin S C. Nature Communications, 2013, 4(1):1756

    [76]

    Barredo D, Lienhard V, De Leseleuc S et al. Nature, 2018, 561(7721):79

    [77]

    Horsman D, Fowler A G, Devitt S et al. New Journal of Physics, 2012, 14(12):123011

    [78]

    Li L S, Zou C L, Albert V V et al. Phys. Rev. Lett., 2017, 119(3):030502

    [79]

    Muralidharan S, Li L S, Kim J et al. Scientific Reports, 2016, 6(1):20463

    [80]

    Gambetta J. Expanding the IBM Quantum Roadmap to Anticipate the Future of Quantum-centric Supercomputing. https://research.ibm.com/blog/ibm-quantum-roadmap-2025, 2022

    [81]

    Tillich J P, Zémor G. IEEE Transactions on Information Theory, 2013, 60(2):1193

    [82]

    Breuckmann N P, Eberhardt J N. IEEE Transactions on Information Theory, 2021, 67(10):6653

    [83]

    Cai W Z, Mu X H, Wang W T et al. 2023, arXiv:2302.13027

    [84]

    Song C, Xu K, Li H K et al. Science, 2019, 365(6453):574

    [85]

    Yao Y Y, Xiang L, Guo Z X et al. Nature Physics, 2023, 19:1459

    [86]

    Niu J J, Zhang L B, Liu Y et al. Nature Electronics, 2023, 6(3):235

    [87]

    Samutpraphoot P, Đorđević T, Ocola P L et al. Phys. Rev. Lett., 2020, 124(6):063602

    [88]

    Bluvstein D, Levine H, Semeghini G et al. Nature, 2022, 604(7906):451

    [89]

    Sørensen A, Mølmer K. Phys. Rev. Lett., 1999, 82(9):1971

    [90]

    Tuckett D K, Darmawan A S, Chubb C T et al. Physical Review X, 2019, 9(4):041031

计量
  • 文章访问数:  370
  • HTML全文浏览量:  38
  • PDF下载量:  1561
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-22
  • 网络出版日期:  2023-11-16

目录

    /

    返回文章
    返回