高级检索
王阳元, 康晋锋. 物理学研究与微电子科学技术的发展[J]. 物理, 2002, 31(07).
引用本文: 王阳元, 康晋锋. 物理学研究与微电子科学技术的发展[J]. 物理, 2002, 31(07).
Physics research and the development of microelectronics[J]. PHYSICS, 2002, 31(07).
Citation: Physics research and the development of microelectronics[J]. PHYSICS, 2002, 31(07).

物理学研究与微电子科学技术的发展

Physics research and the development of microelectronics

  • 摘要: 回顾了微电子学的诞生和微电子技术的发展历史,展望了微电子技术未来的发展趋势.在微电子技术诞生和发展过程中具有一些里程碑式的发明,如晶体管、集成电路、集成电路平面工艺、MOS器件、微处理器、光刻技术、铜互连工艺的发明等,其中物理学研究和突破起了关键的基础作用.在社会需求、物理学研究和技术进步的推动下,微电子技术一直并将继续以特征尺寸缩小、集成度提高的模式,按摩尔定律预测的指数增长率发展.微电子技术的发展,不仅为物理学的研究提供了崭新的技术基础,而且为物理学研究展现了更为广阔的空间.但随着器件特征尺寸逐渐缩小并逼近其物理极限,微电子技术的发展将受到来自于材料、工艺和物理基础等方面的挑战,并呈现出多维发展的趋势,这些挑战涉及了微电子学与物理学的共同理论基础,需要二者互相锲合,期待新的突破.

     

    Abstract: We review the birth and development of microelectronics. There are many historical milestone inventions such as transistors, integrated circuits, the planar process, metal-oxide-semiconductor transistors, microprocessors, lithography and copper interconnect technology in which physics theories and achievements played a key role. The future development of microelectronics is also overviewed. Under the drive of social demand and advances in physics and technology microelectronics has been and will continue developing according to Moore's Law with shrinking size but increasing integration. On the other hand, the developments in microelectronics not only provide a strong technology base but also open up new research areas for physics research. As device feature size approaches its physical limit, microelectronics will face new challenges involving material, technology and basic physics, and will develop in a multi-dimensional fashion. As these challenges involve the common theoretical basis of microelectronics and physics, close interaction of the two fields is acquired for future new breakthroughs.

     

/

返回文章
返回