高级检索

碳纳米管阵列超双疏性质的发现

Discovery of super-amphiphobic properties of aligned carbon nanotube films

  • 摘要: 用高温裂解酞菁金属络合物方法制备了几种具有不同形貌的阵列碳纳米管膜,并对其超疏水和超双疏性质进行了研究.对于具有均匀长度和外径的阵列碳纳米管膜,文章作者发现,在未经任何处理时,其表现出超疏水和超亲油性质,与水的接触角为1585±15°,与油的接触角为0±10°.经氟化处理后,则表现出超双疏性质,与水和油的接触角分别为171±05°和161±10°.对具有类荷叶结构的阵列碳纳米管膜,其表面形貌与荷叶的十分接近,且在未经任何处理时所表现出的超疏水性也与荷叶的非常接近,与水的接触角为166°,滚动角为8°.这种超疏水和超双疏性质是由表面的纳米结构以及微米结构和纳米结构的结合产生的.这一发现为无氟超疏水表面/界面材料的研究提供了新的思路.

     

    Abstract: Several kinds of aligned carbon nanotube(ACNT) films with different morphologies were prepared by pyrolysis of metal phthalocyanines. Super-hydrophobic and super-amphiphobic properties were studied in detail. The ACNT films with fairly uniform length and external diameter showed super-hydrophobic and super-oileophilic properties, with contact angles(CAs) of 158\^5±1\^5° and 0±1\^0° for water and rapeseed oil respectively. After fluorination treatment, these angles became 171±0\^5° and 161±1\^0°, respectively, showing both super-hydrophobic and super-oileophobic properties, typical of a super-amphiphobic surface. For ACNT films with lotus-like structures, not only was the morphology close to that of lotus leaves, but their super-hydrophobic properties were almost the same also. The CA and sliding angle for water of this kind of films were 166° and 8°,respectively. These super-hydrophobic and super-amphiphobic properties are caused by the nanostructures and the combination of nanostructures and microstructures on the surface. This discovery may provide a new method to study super-hydrophobic surface/interface materials without fluorine.

     

/

返回文章
返回