表面等离激元纳米阵列结构传感器的 集成化和小型化研究*

梁瑜章 徐挺^{*} (南京大学固体微结构物理国家重点实验室 现代工程与应用科学学院 南京 210093)

Integrated miniature plasmonic nanostructure sensors

LIANG Yu-Zhang XU Ting⁺ (College of Engineering and Applied Science, National Laboratory of solid state Microstructures, NanJing University, Nanjing 210093, China)

摘 要 表面等离激元由于其异常的光学特性在高灵敏度传感领域有着广泛的应用 前景。然而,传统棱镜式表面等离激元传感器由于庞大的体积和昂贵的成本限制了其进一 步发展。表面等离激元金属纳米阵列结构传感器的出现为实现低成本、小型化和集成化的 表面等离激元传感器提供了一条有效的解决途径。文章首先总结了表面等离激元纳米阵列 结构传感器的发展现状和应用优势,然后主要介绍了近期作者课题组在表面等离激元传感 器小型化、集成化、低成本方面的一些工作。这些工作对推动表面等离激元传感理论的发 展,实现金属纳米阵列传感技术器件化具有较为重要的现实意义。

关键词 表面等离子激元,纳米阵列结构,光学传感器,光学集成器件,生化传感

Abstract Surface plasmon polaritons (SPPs) have extensive application prospects in high-sensitivity biosensing because of their extraordinary optical properties. However, the large size and cost of prism-based plasmonic sensors limit their commercial applications. Fortunately, the emergence of metallic nanostructured sensors has provided an effective approach to realize low-cost and highly integrated plasmonic sensors. In this review, we first assess the current status and advantages of plasmonic nanostructured sensors, then focus on our group's recent research on their miniaturization, integration, and fabrication cost reduction. Our work is of significance for the development of both plasmonic sensing theory and nanostructured sensing technology.

Keywords surface plasmon, nanoarray structure, optical sensor, optical integrated devices, biochemical sensing

1 引言

随着信息时代的到来,人们单靠自身的感觉 器官从外界获取信息、发现自然现象和规律是远 2018-09-19收到

† email: xuting@nju.edu.cn DOI: 10.7693/wl20190104

远不够的。为了适应各种需求,传感检测技术已 经成为日常生产和生活中最为广泛和最为重要的 信息获取手段。表面等离激元传感技术,作为一 种从20世纪90年代发展起来的新型光学检测技 术,已经为环境检测、健康监测、生化分析等领 域注入了新的活力,尤其在促进生命科学、化学

^{*}国家自然科学基金(批准号: 61705100, 61575092, 11774163)资助项目

和材料等学科的发展方面有着广泛的应用前景。

2 表面等离激元传感器

2.1 基本概念和分类

表面等离激元^[1, 2]是一种表面波,其本质是金 属与介质分界面上光与自由电子之间相互作用而 引起的电磁振荡,具有短波长、近场增强、表面 局域等特性。人们利用表面等离激元的局部电磁 场对周围介质敏感的特性建立了表面等离激元传 感技术。目前基于该技术发展起来的光学检测技 术,已经成为定性测量生物分子相互作用的重要 手段。与传统的生物检测技术相比,表面等离激 元生化传感器主要具有以下优点^[3]:(1)样品无 需标记;(2)灵敏度高、背景干扰小;(3)实时监测 生物分子之间反应的动态过程;(4)待测物无需 纯化。

表面等离激元主要分为两类:传播型表面等 离激元和局域型表面等离激元。传播型表面等离 子激元通常利用棱镜结构上的贵金属薄层来激 发,基于这种激发方式制备的表面等离子共振传 感器同时具有较高的灵敏度和较好的稳定性,已 经实现了商业化并在医疗诊断和药物筛选等方面 得到了初步的应用(图1(a))。然而,由于棱镜结构 的存在,该系统的搭建通常需要价格昂贵且体积 庞大的精密光学仪器,很难做到小型化、便携式 和远程操控,另外表面电磁场较大的趋附深度限

制其对一些生物小分子的检测¹⁴。近 些年,为了实现传感器的低成本、小 型化和集成化,基于纳米结构的局域 表面等离激元传感器的设计和应用受 到越来越多的关注。

2.2 纳米阵列传感器的优势

相比于棱镜式表面等离激元传感器,金属纳米阵列结构表面等离激元 传感器由于其特征尺寸接近或小于光 波长,因此展现了一系列特殊的光学 性能^[5, 6],在此基础上研制出的传感器件展现出了 很多优势^[7]: (1)纳米阵列结构不需要额外的耦合 结构,可以直接激发结构中的表面等离激元模 式,更易于结构的小型化和集成化(图1(b));(2) 检测范围更宽和线性度更好;(3)结构设计更加自 由化, 传感机制更加灵活多样化; (4)金属纳米阵 列结构同时也与现有的成像器件和微流控相兼 容,这为多路复用、高通量的生物传感器设计提 供了可能; (5)克服了棱镜式表面等离激元传感器 检测生物小分子灵敏度低的缺陷,有效地扩大了 表面等离激元生物传感器的应用范围;(6)适用的 光谱范围更广, 金属纳米阵列传感器设计的光谱 范围可以从可见光扩展到近红外、中远红外甚至 到太赫兹频段。目前金属纳米阵列结构传感器得 到了广泛的研究,正在从光学性质的研究向功能 器件研究方向迈进,并渗透到不同学科,带动许 多交叉学科的融合。在未来,基于金属纳米阵列 的光学检测技术将在医疗诊断、药物发现、病原 体检测、食品检测、环境检测、生物反恐和国家 安全防御等方面发挥重要作用。

2.3 纳米阵列传感器的研究现状和存在的问题

表面等离激元纳米阵列传感器的性能主要由 折射率灵敏度、表面灵敏度、品质因数和检测极 限等因素所决定,然而这些性能的提高又与纳米 结构的尺寸、形貌和材料参数等息息相关。因 此,弄清楚纳米结构的形貌和尺寸对电磁场模式

图1 (a)棱镜式表面等离子激元传感器;(b)基于纳米结构的局域表面等离子激 元传感器 之间的耦合作用的影响成为传感器设计的主要内 容[5-7]。为了提高传感器的性能和实现传感器件小 型化和集成化、人们基于表面等离激元纳米阵列 结构做了大量的研究。例如,研究人员基于三层 金属盘/介质/金属的纳米阵列结构设计的传感器 折射率灵敏度大约400 nm/RIU左右^[8, 9],这种结 构存在辐射损耗较大导致谐振谱较宽的问题,这 极大降低了结构的光学检测性能。

为了进一步减小以上结构的辐射损失,获得 窄线形,研究人员提出了两种可行的方案。第一 种方案,利用纳米结构中等离子模式之间的耦合 形成Fano共振和电磁感应透明效应¹⁶,利用非辐 射暗模窄带的特性来提高传感器的品质因数和探 测性能。例如,基于Fano效应提出的非对称金属 环和金属盘的嵌套结构[10-12]、金属纳米孔阵列[13, 14] 和基于电磁场感应透明效应的"石门型"孔阵列[15] 等等。第二种方案与第一种方案最大的不同是基 于空间光的斜入射。例如,研究人员发现通过优 化入射光的角度,倒置金字塔纳米阵列结构^[16]和纳 米"蘑菇"阵列^[17],共振模式的带宽小于10 nm, 这极大提高了共振模式的品质因数,同时他们利 用生物分子间的相互作用再次验证了传感器的性能。

值得注意的是,近期人们将双曲色散人工超 材料纳米结构应用到传感领域。例如,研究人员 将金属纳米线阵列集成在棱镜耦合系统中¹¹⁸和 利用金属介质多层膜结构集成在纳米孔阵列系统 中^[19],得到超过30000 nm/RIU的折射率灵敏度, 但这两种结构的共振耦合模式同样都是在非正人

(a) (b) 0.8 ₩ 0.6 版 0.6 0.2 X2 数值模拟 λ_1 0.8 举 0.6 ▲ 0.6
● 0.4 流通池 0.2 实验测量 0 700 650 750 850 800 波长/nm

射的情况下才能激发。另外,多种新型非线性材 料如石墨烯、碳纳米管、磁性材料等也被用来提 高金属纳米阵列结构的传感性能^[20, 21]。国内也有 很多单位和研究人员开展了相关研究。例如,武 汉大学徐红星课题组利用模式杂化理论解释了介 质基底上银纳米方块的Fano 共振,通过该物理模 式可以进一步优化纳米结构的传感灵敏度^[22];中 山大学金崇君课题组提出了一种纳米"蘑菇"超 构材料阵列, 通过 Wood 异常与局域表面等离激 元之间的Fano共振,实现了高灵敏度的体折射率 探测和生化传感^[17]:哈尔滨工业大学姜永远课题 组基于Fano共振效应提出了双周期的金属纳米盘 阵列。在理论设计的基础上,利用电子束曝光技 术开展了实验研究,并且在理论上给出了该结构 好的传感性能^[23],南京师范大学王鸣课题组利用 纳米球压印技术设计和制备了大面积的金属纳米 环阵列,并在实验上验证了结构的传感性能^[24]。 相比于国外,国内课题组对于表面等离激元纳米 阵列生化传感器的研究相对较少。

集成化、小型化纳米阵列结构传感器 3

3.1 金属纳米环阵列传感器

我们课题组长期致力于表面等离子激元纳米 阵列结构的光场和光谱调控方面的研究并积累了 一些成果[25-28]。近期,我们在表面等离激元纳米 结构生化传感器的集成化和小型化方面取得了一

> 些进展。通过将纳米盘和纳 米孔结构在空间叠加构建出 新型的金属纳米环结构,如 图 2(a) 所示。该结构存在两 个共振最小值λ1和λ2,这两 个共振模式不仅满足窄带的 特征(理论半峰宽7 nm),而 且具有高的峰值对比度(达到 0.7), 如图 2(b)所示。该结构 克服了已有纳米结构传感器 存在的宽带宽和低峰值对比

度的问题。

为了使用模式耦合理论 定性解释金属纳米环阵列的 两个共振模式的物理机制, 我们首先计算了纳米环、纳 米孔和纳米盘的上下表面分 别在两个共振模式下的面内 电荷分布(图3)。从图中可以 清晰地看到:金属纳米环阵 列的电磁场分布正好是纳米 孔和纳米盘结构的面内偶极 子模式在自由空间的叠加。 对于共振模式\1,纳米孔和 纳米盘结构上表面的偶极子 模式方向相反,这种反向平 行的偶极子相互作用不仅减 小了纳米环阵列的总偶极矩 而且还降低了它的辐射损 耗。因此,金属纳米环阵列 通过反平行偶极子模式将入 射光局域在结构的上表面, 形成亚辐射的等离子模式。 由于亚辐射等离子模式具有 更强的近场局域性,导致在 λ处窄带吸收峰的形成。

然而,在相同的共振位 置处,平行偶极子模式在金 属纳米环结构的下表面形 成。平行偶极子模式使结构 总偶极矩和辐射损失增加。 但与上表面相比,金属纳米 环阵列的下表面光强弱很 多。因此,在共振模式 λ 」 级,结构上表面增强的电磁 场对于外界环境的改变非常 敏感,能被用于传感检测。 共振模式 λ 」的偶极模式相互 作用与共振模式 λ 」正好相 反:结构上表面平行偶极子 模式和结构下表面反平行偶

图3 (a)金属纳米环阵列数值计算的反射谱和吸收谱,数值计算的(b)纳米环、(c)纳米孔和 (d)纳米盘在共振模式λ₁和λ₂处上表面和下表面内电子分布;(e)数值计算的金属纳米环阵列在 共振模式λ₁和λ₂处面外电子分布^[29]

图4 (a)不同浓度的氯化钠溶液下金纳米环阵列的实验反射谱;(b)共振模式λ₁的波长位置与 溶液折射率之间的线性关系;(c)在不同浓度的氯化钠溶液下共振模式λ₁的波长随时间实时 响应;(d)信噪比与溶液折射率变化量之间的关系^[29]

极子模式,因此在共振模式心 处电磁场能量主要局域在结构 的下表面。因为金属纳米环阵 列的下表面是玻璃基底,并不 与液体微流道连通,所以共振 模式2.不能被用于传感检测, 但可以作为共振模式λ传感检 测的自参考通道。另外我们还 计算了金属纳米环阵列在两个 共振模式处的面外电子分布(图 3(e))。在共振波长处,我们能 清晰地看到纳米孔(或者纳米 盘)结构的电子分布呈现面外偶 极子模式(四极子模式)。设计 的金属纳米环结构利用面外偶 极子和四偶极子的相互耦合作 用形成反对称线性的类Fano共 振。此外, 与纳米孔和纳米盘 结构相比, 在共振模式处金属纳米环 结构上表面的光吸收和近场强度要强 的多,这两个特性将有益于传感检测。

在研究金纳米环阵列的传感性能 之前,首先需要将聚二甲基硅氧烷流 通池组装在传感芯片(图2(a))。我们 通过研究金属纳米环阵列的共振波长 在不同浓度氯化钠溶液下的响应, 获 得表征传感器性能的两个重要指标: 折射率灵敏度和分辨率。如图 4(a)所 示,随着溶液折射率的增加,共振模 式\1出现明显的红移,然而共振模式 λ2的波长几乎没有发生明显的变化。 实验结果测得共振模式λ的折射率灵 敏度和品质因数分别为513 nm/RIU 和35 RIU⁻¹(图4(b))。根据图4(c)中在不 同浓度的氯化钠溶液下共振模式λ 的波长随时间实时响应的曲线,得 出金纳米环阵列的折射率分辨率为 1.3219×10⁻⁴ RIU

为了展示金纳米环阵列对生物分

子的检测能力,我们通过固定在传感芯片上核糖 核酸酶B分子检测了不同浓度的刀豆蛋白A分子 (图5(a))。由于刀豆蛋白A与核糖核酸B之间的特 异性相互作用,随着待测蛋白分子浓度的增加, 共振模式Ai的波长红移量增加(图5(b))。另外,结 果显示我们设计的金纳米环阵列对刀豆蛋白的检 测极限为45 nm。这进一步显示金纳米环阵列可 以作为一个高性能的传感平台用于无标记生物分 子检测。

以上金纳米环阵列被制备在石英玻璃基底 上,它们的性能测试依赖于体积庞大光学显微镜 系统,该测试系统极大限制了纳米结构传感器的 实际应用。因此,微型化、便携式、点式和远程 表面等离子体纳米结构传感器成为实际应用的理 想目标。由于金纳米环结构具有简单的测试原理

和光学性质对偏振不敏感特性,我们 利用聚焦离子束将金纳米环制备到光 纤端面上,进一步实现表面等离激元 金纳米环阵列传感器的小型化和集成 化(图 6(a),(b))。光纤的使用不仅大 幅度简化了测试光路而且还降低实 验成本。同样我们测试了制备的光 纤传感器的传感器性能,包括折射 率灵敏度和生物分子检测(图 6(c f))。结果显示,基于金纳米环阵列的 光纤传感器的传感性能与玻璃 基底上的传感器性能基本一致。

3.2 金属膜增强的纳米环阵 列传感器

在以上工作的基础上,我 们还研究了金属膜对纳米环阵 列中的共振耦合模式的增强。 由于纳米环底部金属膜的存 在,该结构存在两个共振模 式,分别对应于局域等离激元 模式和传播等离激元模式。我 们利用两个偶极模式之间的平 行耦合和反平行耦合解释了两 个共振模式出现的物理机制。为了保证该结构的 精确度,我们在单晶金膜上加工制备出该结构(图 7)。从体折射率灵敏度和表面灵敏度两个方面系 统研究了两个共振模式的传感性能,研究发现传 播等离激元模式的体折射率灵敏度高于局域模 式,然而局域模式的表面灵敏度要高于传播模 式。根据以上发现,我们可根据共振耦合模式的 趋肤深度的长短找到最优的生物分子检测方 法。另外,两个具有不同传感机制的共振模式同 时出现在同一基底中,因此该结构可以同时对不 同大小的生物分子进行最优检测。

3.3 低成本、小型化的纳米阵列传感器

在上面的两个工作中,我们主要采用"自上 而下"纳米加工工艺实现纳米结构的制备,该制

图7 用于研究金属膜对纳米环阵列中的共振耦合模式的增强的结构示意图和 扫描电镜图^{30]}

图8 (a)基于金纳米孔阵列的光纤传感器"自上而下"的实验制备流程,插图显示了每 个实验步骤下的光纤探头;(b)光纤传感器的实物图和扫描电镜图

图9 采用"自下而上"的超薄氧化铝模板制备的传感芯片

备工艺在纳米结构加工方面本身具有很多不足, 如需要昂贵的仪器、耗时和产量低。为了克服以 上这些不足,我们以"自下而上"聚合物纳米小 球压印技术将金纳米孔阵列集成在多模光纤的 端面上,该方法不仅降低了纳米结构光纤传感 器实验制备的成本,还大幅度提高传感器制备的 产量。制备的工艺流程和传感探头的实物图, 如图8所示。

此外,入射光角度可以实现对金属纳米结构 光谱性质的调控,同样影响其传感性能。但该调 控方式常常受限于纳米结构的小尺寸面积。为了 克服这一难题,最近我们采用"自下而上"的超

参考文献

- Maier S A. Plasmonics: fundamentals and applications. New York:Springer, 2007
- [2] Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer-Verlag, 1988
- [3] Cunningham A J. Introduction to bioanaytical sensors. New York: John Wiley, 1998
- [4] Roh S, Chung T, Lee B. Sensors 2011, 11:1565
- [5] Anker J N, Hall W P, Lyandres O et al. Nat. Mater., 2008, 7:442
- [6] Luk'yanchuk B, Zheludev N I, Maier S A et al. Nat. Mater., 2010, 9:707
- [7] Lal S, Link S, Halas N J. Nat. Photon., 2007, 1:641
- [8] Liu N, Mesch M, Weiss T et al. Nano Lett., 2010, 10:2342
- [9] Cattoni A, Ghenuche P, Haghiri-Gosnet A M et al. Nano Lett., 2011, 11:3557
- [10] Sonnefraud Y, Verellen N, Sobhani H et al. ACS Nano, 2010, 4: 1664
- [11] Hao F, Nordlander P, Sonnefraud Y et al. ACS Nano, 2009, 3:643
- [12] Cetin A E, Altug H. ACS Nano, 2012, 6:9989
- [13] Escobedo C. Lab Chip, 2013, 13:2445
- [14] Cetin A E, Etezadi D, Galarreta B C et al. ACS Photonics, 2015,

薄氧化铝模板实现了反射式金属纳米盘阵列表面 等离子超表面,利用该方法制备的传感芯片的面 积大于4 cm²(图9)。由于该传感芯片的大面积尺 寸,我们系统研究了该传感芯片角度依赖的传感 性质。结果发现,入射光角度能作为一种简单方 法优化结构的传感性能。

4 展望

综上主要回顾了近年来在表面等离激元金属 纳米结构传感器设计、制备、测试等方面取得的 一些阶段性研究成果,这些工作为发展低成本、 便携式、小型化表面等离激元体传感系统奠定了 理论与实验基础。当然,以上传感器要想在生物 和医疗领域得到真正应用,还有很多问题需要解 决。不过,我们相信随着该研究领域的不断发 展,更加实用化、性能优异的表面等离激元传感 器件将被开发出来,实现该类传感器的大规模普 及性应用。

2:1167

- [15] Liu N, Weiss T, Mesch M et al. Nano Lett., 2010, 10:1103
- [16] Gao H, Yang J C, Lin J Y et al. Nano Lett., 2010, 10:2549
- [17] Shen Y, Zhou J, Liu T et al. Nat. Commun., 2013, 4:2381
- [18] Kabashin A V, Evans P, Pastkovsky S et al. Nat. Mater., 2009, 8:867
- [19] Sreekanth K V, Alapan Y, ElKabbash M et al. Nat. Mater., 2016,15:621
- [20] Caballero B, Garcia-Martin A, Cuevas J C. ACS Photonics, 2016,3:203
- [21] Guo Q, Zhu H, Liu F et al. ACS Photonics, 2014, 1:221
- [22] Zhang S, Bao K, Halas N J et al. Nano Lett., 2011, 11:1657
- [23] Zhao W, Jiang Y. Optics Letters, 2015, 40:93
- [24] Ni H, Wang M, Shen T et al. ACS Nano, 2015, 9:1913
- [25] Xu T, Amit A, Maxim A et al. Nature, 2013, 497:470
- [26] Xu T, Wu Y K, Luo X et al. Nat. Commun., 2010, 1:59
- [27] Xu T, Lezec H J. Nat. Commun., 2014, 5:4141
- [28] Xu T, Walter E C, Agrawal A et al. Nat. Commun., 2016, 7:10479
- [29] Liang Y, Zhang H, Zhu W et al. ACS Sensors, 2017, 2:1796
- [30] Liang Y, Li L, Lu M et al. Nanoscale, 2018, 10:548