眼见为实(上):磁畴成像

刘俊明

(南京大学物理学院 固体微结构物理国家重点实验室 南京 210093)

2020-03-04收到 † email:liujm@nju.edu.cn DOI:10.7693/wl20200417

看到了,才相信 安得物理论虚实,眼见为真定认知。 只是江山多乱序,此峰难断彼峰斯。

1 引子

自然科学,之所以在人类认识 和实践中具有崇高信誉和地位,笔 者以为有两个运行要素是重要的: 严密的分析推演逻辑和眼见为实的 理念。前者太过高深,笔者不敢谬 论;后者即为本篇学习体会之主角。 眼见为实,即"Seeing is believing", 通俗一些即"看到了,才相信"。刚 开始我们也许只能看到局部,如瞎 子摸象,然后我们相信局部并推演 全局,所以才有嘲笑瞎子摸象的勇 气。慢慢地,看到全部,凭智慧和 经验,我们就更为笃信。所以,科 学的内涵有一个重要方面即是: 谁 有办法让我们看到,谁就是我们的 眼睛和灵魂窗户,谁就是好科学!

看,或者观测,乃西方自然科 学从亚里士多德开始就奉行的经验 科学之核心。我们不妨总结为:"科 学乃从观测中来、到观测中去"。亚 历山大·弗莱明之所以偶然发现了盘 尼西林,是因为他在即将扔掉的培 养皿中观察到霉菌引起金黄色葡萄 球菌减少。而阿尔伯特·班杜拉的心 理学实验,则揭示出幼儿可以借助 观察他人的行为而学习之。这些小 例子,不过是科学史上无数个 seeing is believing 佐证之毫毛^[1]。而这 一理念,推广到更广泛的"从实践 中来、到实践中去"的哲学思维, 也是广义的 seeing is believing。

当然,自然科学中,物理学家 最相信视觉或观测感受,其次才是 基于实验的推理,再次才是理论预 言。对眼见为实的追求,主导了实 验科学的发展脉络,这么说大概不 会有读者反对。反过来,物理学家 追求"眼见为实",很多时候都到了 痴迷癫狂的地步,也不知道是好事 还是坏事。

本文将从眼见为实的万花筒 中,挑几幅比较简陋的图画,来评 头论足一番,进而导出这些图画事 业的未来挑战。

2 磁畴成像之理

众所周知,在凝聚态物理和功 能材料中,磁学与磁性材料不但历 史久远,而且已经大规模地介入我 们的日常生活。这一学科的发展和 大规模应用,除了好的材料外,很 大程度上有赖于对磁畴及其动力学 的操控。这种操控,首先是要"看 见"畴,然后要理解为何会形成磁 畴。所以,磁畴形成及其观测,就 成为磁学学科的一个重要方面。

2.1 磁畴的形成

铁性材料中, 畴的存在早就是 天经地义的事情, 但却一直是研究 工作的关注点, 近百年来未曾中 断。我们现在的理解是:一个空间 尺度有限的铁磁体,其剩余磁矩在 电磁学上用磁感应强度B、磁场强 度H和磁矩M的概念来描述,它们 的相互关系如图1(a)所示。磁体一 端如果有磁力线发出体外,然后从 体外回到另一端而终止,此乃工程 磁学语言中形象生动的杂散场(stray field),如图1(b)所示,为空间有限 体系的伴随产物,虽然这么说并不 严格。这些杂散场携带了能量,其 信步所至,均带去能量、施加影响。

此类空间有限是一类磁体沿某 一方向上的约束。磁畴的形成,可 以简单地理解为降低布满外部空间 的杂散场所携带的磁偶极能(magnetic dipolar energy), 即退磁能。图 1(c-i)所示为一单畴磁体,其杂散场 分布区域广大。而削弱这一区域, 磁体内部会自发地发生磁矩重新分 布,形成磁畴。最直观的重新分布 即如图1(c-ii)所示形成上下两个畴, 杂散场得以大幅削弱。如果进一步 形成上下四个畴,如图1(c-iii)所示, 则杂散场会进一步削弱。不过,这 一进程也会反过来增加静磁交换能 (exchange energy),可以大致理解为 畴壁能。磁畴的最终形态与尺度是 磁偶极能与交换能相互竞争的产 物,如此而已。

当然,如果铁磁样品的尺寸和 外观形状发生变化,磁畴的形态会

图1 磁畴的形成机制 (a)磁体中磁感应强度B、磁场H和磁矩M的关系^[2]; (b)磁体 单元 (畴)的杂散场 H_{\circ} (磁体外磁力线)分布,磁体内部虚箭头 H_{\circ} 为退磁场,实箭头为磁 感应强度 $B^{(3)}$; (c)为了降低杂散场导致的磁偶极能,形成的磁畴尺寸越小越好,而磁 交换能要求磁畴越大越好,两者竞争,导致一定尺寸和形态的各类磁畴形成⁽⁴⁾

图 2 磁畴观测模式的大致分类 (a) 表面观测与体内观测^[5]; (b) 平行成像模式原理^[6]; (c) 扫描成像模式原理^[7]

有丰富的表现,如形成图1(c-v)之 类的畴结构。很显然,上部所示的 头对头(head-to-head)畴结构稳定性 差,而下部所示的头一尾相接涡旋 畴则基本能将杂散场全部消除掉, 此等畴必趋于稳定。不过,磁畴过 于细密,会导致畴壁能明显升高。 最终的磁畴结构到底取何形态,将 由一系列非常复杂的能量竞争来决 定。确定这些形态,成为工程磁学 的重要内容。 我们为什么要费尽心机去研究 这些畴?回答这个问题简单而艰 难。简单是因为,几乎所有工程磁 学应用都以畴为基本单元,而不是 以一个电子自旋为单元。因此,磁 学中讨论磁矩都是基于畴而展开 的。事实上,对所有铁性应用,均 是如此。艰难是因为我们肉眼通常 看不到磁畴,因为磁畴通常对应于 金属或半导体,对可见光不透明。 故而,对畴的使用,我们就不得不 面临瞎子摸象的窘境。

当然,当应用单元在未来某个 时候减小到一个电子自旋时,畴的 价值才会消退,但畴的新内涵也会 出来,从而生生不息。

这些复杂畴结构不能只是说说, 要有办法确认它们是不是如此。所 以,才需要有"眼睛"去看。不过, 仅仅就从简单介绍而言,要看清楚 磁畴,得考虑如下几点:

(1)畴的衬度:成像衬度高、成 像时间短、不能明显干扰畴原来的 状态;

(2)磁矩大小与方向:磁畴的矢 量成像技术。这类技术在诸如涡旋 畴和斯格明子等新的磁结构成像上 变得愈加重要;

(3)畴形态:表面畴结构和内部 畴结构的探测与区分。通过观测的 表面畴形态,来推测样品内部的畴 结构,这种方法已经被证明不可 靠。由于复杂的各种作用能纠缠在 一起,铁性畴通常存在显著的样品 空间不均匀性;

(4)空间分辨率:一种观测方法 不可能覆盖全部尺度,要看到不同 空间尺度的畴,要探测不同动力学 过程,就需要使用不同的观测技术;

(5)畴壁:除了畴本身的形态和 物理外,最近的发展趋势开始追求 畴壁结构及其动力学的成像,因为 自旋电子学等已经开始垂涎畴壁的 各种异数。

由此可见,我们看磁畴的畴眼 (domain eyes),不但要能够统观大 小畴及其模样,还要记录畴运动的 快慢、熟悉畴的各种古怪秉性。要 做到如此,客观而言,殊为不易, 挑战巨大!

2.2 磁畴观测原理

探测磁性有悠久历史,从最初 的磁粉示踪,到现在基于同步辐射 和中子衍射的各种新技术,不一而 足。但对磁畴的观测,却未必乐 观,虽然一般还只是讨论铁磁畴。 从最简单的角度去理解这些观测原 理,无非是利用各种外界激励(磁、 电、光、热场等)与磁感应强度B发 生相互作用,反过来探测B的大小 和时空分布,由此绘制出磁畴的时 空形态。注意:这里的外部激励不 可显著改变B的原始状态,虽然微 小改变不可避免。

磁畴的各种观测技术纷繁复 杂,依据不同的立足点,可以进行 不同分类。

首先,表面观测还是体内观 测,对应就有基于反射和透射的观 测模式,如图2(a)所示。表面观测 技术着重于样品表面的信号探测, 在深度方向激励信号应快速衰减, 从而得到只属于表层畴结构的横向 分辨成像(laterally resolved imaging)。 表述这一性质的物理量乃衰减深度 λ。合理的表面磁畴观测技术要求 λ 应在几个纳米尺度内。与此相反, 体内观测技术,则着重提取深度方向的磁信息,然后进行平均。此时,透射探测模式不可避免。透射观测当然可以将样品整体磁性质展示出来,但其不足在于需要排除支撑衬底或去除样品中非磁材料部分。在磁性薄膜和异质结变得越来越重要的今天,这一缺点正在成为制约因素。

其次,关注样品成像模式,对 应于平行(同时)成像(parallel imaging)和扫描逐点成像(scan imaging) 模式,如图2(b)和(c)所示。同时成 像,如光学成像,其效率高、速度 快,但对成像本身有很高技术要 求,其分辨率可能也受到限制,典 型的有光学成像技术。扫描成像, 如扫描探针技术,则可以逐点扫 描,特别是对我们感兴趣的区域进 行重点关注,虽然这种扫描必然是 以牺牲效率为代价。

再次,其实是更重要的,即关 注成像模式所依赖的物理原理。参 考柏林自由大学物理学教授 Wolfgang Kuch 的文章 "Magnetic Imaging"^[8], 笔者再稍加补充, 可以形 成表1。

由表1看到,磁畴观测所依赖 的原理可以多种多样,技术细节更 是五花八门,需要根据具体观测要求 而选用。不过,一个很深刻的印象 是:直接利用磁效应本身,即磁偶极 间相互作用或者洛伦兹力作用来直 接显示磁畴,一则时空分辨率不 高,二则研制时空分辨的观测技术 举步维艰。历史上,这方面的努力 前后历经大半个世纪甚至更长,直 到磁扫描探针技术(MFM)的出现才 有所改善。

与此不同,材料科学发展至 今,通过重金投入,已经积累了很 多先进的材料微结构观测技术,如 XRD、电子显微术和若干特定的光 学显微术。其中,有相当一部分技 术,其观测的信号与样品电子结构 密切相关。材料的电子结构包括电 子自旋信息,这就给了磁性对电子 结构施加影响的机会。将这些机会

	,		
物理原理	适用于集成的测试技术	磁成像方法	备注
样品中B对磁颗粒施加力	光学显微镜/肉眼观测	磁粉成像	传统磁粉显示
样品中B对化学式的作用	光学显微镜/扫描电镜(SEM)	化学腐蚀	传统腐蚀、破坏性
样品中B对电子施加力 (洛伦兹力)	振动磁强计(VSM) 超导量子干涉仪(SQUID) 透射电子显微镜(TEM)	洛伦兹显微术(Lorentz microscopy)	分辨率 ~ 100 nm
外场施力于样品上	交变梯度磁力计 (alternating gradient magnetometer, AGM)	磁力显微术 (magnetic force microscopy, MFM)	分辨率 ~ 50 nm
磁矩进动	铁磁共振(ferromagnetic resonance,FMR)	尚无畴成像技术	
样品电子结构变化	磁光克尔效应(MOKE)	克尔显微术	光学分辨率
	X射线磁园二色谱(XMCD) 电子束(电子显微术)	XMCD + 光电子发射显微术(PEEM)	高分辨、同时元素分辨
		XMCD+透射X射线显微术(M-TXM)	高分辨
		带极化率分析的SEM (SEMPA)	分辨率~100 nm
		自旋极化低能电子显微术(SPLEEM)	分辨率~100 nm
		自旋极化扫描隧道显微术(sp-STM)	

表1 若干磁畴成像的原理、搭载技术与成像方法(各种方法的时空分辨率正在不断提高,这里的数据仅供参考)

一一叠加到那些与电子结构密切关 联的表征技术上,磁畴观测就做到 了借鸡生蛋,实现了弯道超车。这 就是X射线同步辐射和中子衍射等 一系列新的磁畴探测技术出现之 前提。

作为铺垫,本篇只简略介绍几 种经典磁畴观测技术,下篇将介绍 基于同步辐射技术发展起来的新技 术和更多的挑战。

3 传统磁畴成像

3.1 克尔显微术

除了古老的磁粉显示技术和腐 蚀技术外,当前常用的磁畴测量技 术之一当属克尔(Kerr)显微术。克尔 显微术即通过测量横向分辨(laterally resolved)的磁光克尔信号(magneticoptical Kerr effect, MOKE)强弱来 成像,从而显示磁畴。这一技术乃 图 2(b)所示平行成像模式的典型。 当然,现在也有为了提升分辨率而 采用扫描模式成像的克尔显微镜, 变种很多。

众所周知,电介质物理中,介 电张量包含了与磁矩相关的分量。 因此,一束偏振光被磁介质反射 后,其偏振特性将带有磁矩的信 息。磁光克尔效应的基本物理图像 并不复杂:入射到样品中的电磁波 激发样品中电荷振动,如果对样品

图3 克尔显微术的原理 (a) MOKE的原理图; (b)克尔显微术观测畴的原理示意 图; (c)一台克尔显微镜的大概架构⁽⁹⁻¹¹⁾

图4 两种典型铁磁性薄膜的磁畴图片,用克尔显微镜成像[12]

施加一定磁场**B**,此电荷运动会受 到磁场**B**施加的洛伦兹力,从而反过 来改变出射光的偏振状态。如果用 偏振片来操控偏振光强度,这一成 像技术的衬度基本上就是强度信息, 对光的频率和相位信息利用不多。

图 3(a)显示了 MOKE 的原理 图,图3(b)显示克尔显微术观测成 像的原理示意图,而图3(c)则是常 见的克尔显微镜的大概架构。很显 然,因为采用光学和静磁场的缘 故,这一技术在大气环境下使用非 常方便,分辨率也可达到微米级。 不过,如果要应用于相对极端条件 如低温和强磁场,或者要发挥光学 显微术的极限分辨率(极端靠近样品 表面,分辨率达到100 nm),则这一 技术会受到很大限制。图4是两幅 典型的铁磁畴克尔显微照片,毫无 疑问,图像很漂亮、出彩,但看起 来也就如此了。

3.2 洛伦兹显微术

要获得高空间分辨率,克尔光 学显微术毕竟寸有所短。搭载于高 分辨电子显微术的磁探测无疑会 获得更高分辨率,洛伦兹显微术 (Lorentz Microscopy)即为其中代 表。这一成像技术也属于同步成像 一类。电子显微镜中的成像电子束 穿透磁性样品时,受到磁矩施加其 上的洛伦兹力。如果样品具有一定 尺度大小的畴,则这些畴的磁矩会 使得电子束路径发生微小偏转。捕 捉到这一微小偏转,即为成像衬度 奠定了基础。

图 5(a)所示即为 Fresnel 成像模 式的原理图。磁畴中的磁矩使得穿 过其中的电子束发生偏转,穿过相 邻两个畴的电子束相互干涉,则畴 壁处一定形成衬度。电子束会聚之 处的畴壁较亮,而电子束分离对应 的畴壁衬度较暗,观测结果如图5 (b)所示。如果要显示畴本身的衬 度,则可以通过添加光阑的方式实 现,如图5(c)所示。这是电子显微 术成像的标准操作。

除此之外,基于电子束穿过磁 性样品时受洛伦兹力作用发生偏转 这一原理,结合具体观测技术的不 同组合配置,可以实现不同的衬度 成像。其中一个代表性实例即近几 年用洛伦兹电镜对磁性涡旋畴、条 带畴和斯格明子的成像显示。图6 即为中国科学院物理研究所沈保根 老师课题组撰写的综述文章中所展 示的一组成果。

当然,洛伦兹显微术可以具有 很高的空间分辨率,揭示10 nm左右 的磁畴或磁结构应属易事。不过, 也有一些特定的磁畴结构,利用洛 伦兹显微术未必能成像磁畴。如图 7 所示的磁畴结构,用这一技术观 测可能就存在较大困难,详细描述 可见图说。与此同时,过去几十年, 透射电子显微术拓展出一系列新的 实时和高分辨动力学观测技术。洛 伦兹磁畴成像也走入一个快速发展 阶段,包括对磁畴翻转动力学的细 致观测。

3.3 带极化分辨的扫描电镜

毫无疑问,洛伦兹电镜用于观 测磁畴已经很有优势,由于自旋电 子学发展更高的要求,国内外很多 科研机构都配备了这一仪器,使得 电镜生产厂商利润不菲。不过,相 比于TEM的操作复杂性和对样品制 备的严格要求,扫描电子显微术 (SEM)要方便很多。而且,大多数 情况下,磁畴的典型尺度用SEM的 分辨率已经足够。从这个意义上, 能够直接观测磁畴的SEM将会更加 受欢迎,更有广谱性。不过要注意 到,一般的电镜是不推荐用于磁性 材料观测的,因为残余磁性会降低 甚至损坏仪器的功能和精度。

1984年前后,Koike等人发展 了第一套能够分辨磁畴的SEM,称 之为Scanning Electron Microscopy with Polarization Analysis (SEMPA), 中文翻译成"自旋极化扫描电子显微 术",有时因为读音也戏称"桑巴"。 桑巴技术所依赖的原理很简单: SEM的入射电子束射入磁性样品表 层,激发出二次电子。这些二次电 子出射前因为与样品的磁矩相互作 用(也就是二次电子自旋被部分极 化),从而携带了磁矩的取向信息。

很容易推想,这种二次电子感 受到的相互作用不会很强,导致的 自旋极化信息将会非常微弱。因 此,需要有高度灵敏的自旋取向探 测器才能实现衬度提取, 而这本身 也是一个长期未能解决的挑战。当 前,最直接的方法,是利用自旋--轨道耦合较强的单晶材料,如Au和 W等重金属作为探测器,因为自旋 一轨道耦合强度随原子序数的四次 方成正比。这些探测器一定程度上 可以将自旋极化信号转化为微弱电 信号而提取出来。图 8(a)和(b)展示 了自旋极化探测的基本框架。可以 看到,二次电子自旋极化的分辨提 取部分显得非常复杂。考虑到自旋 极化和自旋一轨道相互作用都是二 级相互作用,都比较弱,最后得到 的畴衬度不会很强。事实上,图8(b) 所示衬度已经是最好的结果之一了, 可见桑巴这一技术的确存在不足。

当然,桑巴技术最大的优点有 二:(1)空间分辨率较高,在配置了

图5 洛伦兹电子显微术观测磁畴 (a) Fresnel 模式成像畴壁衬度的成像原理^[13]; (b) 对应的观测结果: 畴壁的黑白衬度^[13]; (c) 加装光阑和成像相差后的畴衬度与畴 壁衬度^[14]

图6 (a)—(d) 50 mT磁场下磁畴与温度的依赖关系; (e)—(h) 场冷模式下,不同磁场处理导致的双斯格明子密度变化; (i)—(l) 与(e)—(h)相对应,是磁场上升到完全斯格明子态时,观测到的双斯格明子形貌。实验步骤显示于每一列的上方,实验样品为MnNiGa合金^[14]

图7 洛伦兹显微术观测磁畴所面临的挑战 (a) 对于此类薄膜中头—头和尾—尾衔接的畴结构,因为杂散场在很局域空间内就自行闭合,如此,这些杂散场对穿越其间的电子束影响就很小,穿过样品的电子束被调控偏转的余地就极小,导致最终没有成像衬度⁽⁵⁾((i)和(ii)),(b) 对于这种面内闭合的涡旋畴结构,如果这种涡旋尺寸很小,洛伦兹电镜要显示出衬度也很难,图中所示衬度很淡,其实畴壁细节很难展示清楚⁽¹⁵⁾

场发射电子枪和更好的探测器后,磁 畴探测的空间分辨可以达到100 nm 左右,有足够吸引力;(2)表面畴结 构探测灵敏度高,这是基于SEM本 身的优点。事实上,对SEM技术本 身的那些优点,桑巴都可以继承下 来。但是,桑巴的缺点依然明显: (1)要获得衬度,需要大量二次电子 的自旋分辨成像,这就给空间分辨 率打了折扣;(2)样品需要在真空中 观测,且样品得导电。这一要求与 SEM形貌观测不同,所以成为一个 明显缺憾:对不导电的磁性材料, 这一技术就难以应用。

3.4 自旋极化低能电子显微术

其实,早在桑巴技术发明之前,物理学家已经将低能电子显微术(Low-Energy Electron Microscopy, LEEM)中的电子发射源用自旋极化的电子束来替代,发展了所谓的"自旋极化低能电子显微术(Spin-Polarized Low-Energy Electron Microscopy, SPLEEM)"。SPLEEM与桑巴的不 同是直接将入射电子束携带上自旋极化的信息,这将为LEED反射束 的自旋极化探测提供更好的衬度(图 9)。因此,这一技术似乎能一定程 度上弥补桑巴技术的不足。

为何如此说呢?这里有一个新的机制介入其中,使得LEED可以 超越桑巴。带有自旋极化的低能入 射电子束达到样品表面,与样品表 面磁矩相互作用,然后反射。反射 电子的状态与样品表面电子自旋极 化取向密切相关。其中,这些电子 的能量很可能正好是载流子少子或 多子在真空能级之上的能量差。由 此,反射的低能电子将更多地携带 样品自旋信息,形成更好的衬度。

事实上,LEEM和这里的SPL-EEM均是E.Bauer教授所开拓和发展起来的。LEED的发展历程有专 著加以描述,笔者不敢班门弄斧。 SPLEEM技术的关键之一是自旋极 化电子源和自旋操控装置,其中通 过复杂的静磁学设计和电操控来实 现。SPLEEM的特色之一是其在磁 畴成像的同时LEED的结构和形貌 成像功能依然保存,因此实现了磁 畴与表面微结构细节之间的一一对

图8 桑巴(SEMPA)探测磁畴的仪器原理(a)与提取的磁畴图像(b)。详细描述可见相关专业手册⁽¹⁶⁾

图9 SPLEEM的基本构造与观测到的磁畴图像 (a)仪器大致的示意图,除了自旋极化的电子枪和自旋操控装置外,其他单元与LEED完全一样;(b)E. Bauer 教授课题组用 SPLEEM 研究单层 Fe 原子层畴演化的细节和铁磁相变之间的联系,可以看到磁畴 衬度特别好^[5, 17, 18]

应成像,实属难能可贵。总之, SPLEEM是一款可以实现高分辨磁 畴成像的先进技术,对样品表面磁 畴细节也有很高分辨率。

但因为 LEEM 技术实用度与 TEM 和 SEM 相比不够宽广,这一 有效的磁畴探测技术用得相对较 少。而且,因为是使用低能电子, 电子束所携带的自旋信息对外磁场 就特别敏感,不像那些基于高能电 子的技术。而要观测的样品本身也 是磁性的,且观测外加磁场对样品 畴结构的影响及其演化也是物理研 究的重要一环。SPLEEM的这一缺 点就变成一个很大的问题,此处不 再加以描述。

4 结语

就如"眼见为实"所要求的, 发展能够清晰显示磁畴结构的观测 技术非常重要。我们简单梳理了若 干经典磁性成像技术。事实上,这 些技术尚无一能够达成"看到全 域、看到全部、看到极端"的目标。 看到全域是要求成像覆盖的尺度要 宽,从纳米到宏观;看到全部是要 求对磁矩矢量成像,对样品深度成 像;看到极端则是说这些技术要能 够在极端高低温、强场、实时条件 下进行畴成像。

当然,自然之事,向来是得失 相左。任何技术获得一隅,多会失 却一陬。因此,磁畴成像技术的发 展还有长路漫漫。另一方面,本文 所列实例都是针对那些强铁磁的体 系。自旋电子学当前发展到一个新 的阶段,在追求更快更小之路上看 上了反铁磁这一大类被长期束之高 阁的材料。那么,问题来了:那些 反铁磁畴如何成像观测?这大概正 是很多物理学家当前囊中羞涩却君 子好逑的现状。我们将在下篇讲述 这一问题。

参考文献

- https://www.cebm.net/2013/12/seeing-isbelieving-or-is-it/
- [2] Ali S. Stray field and demagnetizing field. https://www.physicsforums.com/threads/strayfield-and-demagnetizing-field.936874/
- [3] Amaladass E P. Magnetism of amorphous and highly anisotropic multilayer systems on flat substrates and nanospheres. http:// dx.doi.org/10.13140/2.1.2794.0168
- [4] http://www.study-on-line.co.uk/whoami/ thesis/chap5.html
- [5] Kuch W. Magnetic Imaging. Lect. Notes Phys., 2006, 697:275
- [6] Parallel imaging is an approach for reducing scan time and includes techniques such as sensitivity encoding (SENSE)

and generalized autocalibrating partially parallel acquisition (GRAPPA). https:// radiologykey.com/parallel-imaging/

- [7] Gautam R, Samuel A, Sil S *et al.* Current Science, 2015, 108:341
- [8] Kuch W Magnetic Imaging. In: Beaurepaire E et al(eds). Magnetism: A Synchrotron Radiation Approach. Lecture Notes in Physics, vol 697. Springer, Berlin, Heidelberg.2006
- [9] Wang X, Lian J, Li P et al. J. Magn. Magn. Mater., 399, 2016:19
- [10] Soldatov I V, Schäfer R. Journal of Applied Physics, 2017, 122:153906
- [11] Idigoras O *et al.* Nanofabrication, 2014,1:3
- [12] http://oregonstate.edu/engr/magnetics/

magneto-optical-kerr-effect-microscope

- [13] Tanji T. Imaging Magnetic Structures Using TEM. In: Yao N, Wang Z L(eds), Handbook of Microscopy for Nanotechnology. Springer.Boston.MA. 2005
- [14] Peng L C, Zhang Y, Zuo S L et al. Chinese Physics B, 2018, 27(6):066802
- [15] Petford-Long A K, De Graef M. Lorentz Microscopy. In: Characterization of Materials. John Wiley & Sons, Inc. 2002
- [16] https://www.klaeui-lab.physik.uni-mainz. de/sem-with-polarization-analyzer-sempa/
- [17] https://web.asu.edu/ernst/spin-polarizedlow-energy-electron-microscopy-spleem
- [18] Zdyb R, Bauer E. Phys. Rev. Lett., 2008,100:155704-1-4.

大连齐维科技发展有限公司

地址:大连高新园区龙头工业园龙天路27号 电话: 0411-8628-6788 传真: 0411-8628-5677 E-mail: <u>info@chi-vac.com</u> HP: http://www.chi-vac.com

表面处理和薄膜生长产品: 氩离子枪、RHEED、磁控溅射靶、束源炉、电子轰击蒸发源、样品台。

超高真空腔室和薄膜生长设备: PLD系统、磁控溅射系统、分子束外延系统、热蒸发镀膜装置。

