神经网络量子态及其应用 2021-01-26收到 蒋文杰1 邓东灵1,2,* (1 清华大学交叉信息研究院 北京 100084) (2 上海期智研究院 上海 200232) Neural network quantum states and their applications JIANG Wen-Jie¹ DENG Dong-Ling^{1,2,†} (1 Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China) (2 Shanghai Qi Zhi Institute, Shanghai 200232, China)

摘要 神经网络量子态是由人工神经网络所表示的量子态。得益于机器学习, 尤其是深度学习近年来取得的突破性进展,神经网络量子态的研究得到了广泛的关注, 成为当前的热点前沿方向。文章将介绍不同的神经网络量子态,其物理性质与典型应用 场景,最新进展,以及面临的挑战。

关键词 人工神经网络,量子多体问题,量子纠缠,贝尔不等式

Abstract Neural-network quantum states are states represented by artificial neural networks. Thanks to the dramatic progress achieved recently in the field of machine learning, especially deep learning, the study of neural-network quantum states has attracted tremendous attention across communities, and has become one of the most active directions of research. In this paper, we review different kinds of neural-network quantum states, their physical properties, and typical applications. In addition, we also discuss some most recent advances and future challenges along this direction.

Keywords artificial neural networks, quantum many-body problems, quantum entanglement, Bell inequality

1 引言

人工智能主要有三条发展路线:符号主义、 连接主义与行为主义^[1]。人工神经网络是连接主 义的基石,也是最近几年深度学习取得突破进展 的关键要素之一。它是受到生物大脑中信息处理 模式的启发而提出的,最早可追溯到1943年由心 理学家 W.S. McCulloch 与数理逻辑学家 W. Pitts 提 出的神经元模型^[2]。当前,基于神经网络的人工 智能技术正在给人类文明的方方面面带来革命性 的改变³³:从语音、图像识别到引力波、黑洞探 测,再到数据挖掘、自动驾驶、医学诊断、证券 市场分析,等等。2018年,计算机科学的最高 奖——图灵奖也被授予三位人工智能科学家 Yoshua Bengio, Geoffrey Hinton与Yann LeCun, 以 表彰他们在相关领域所做的突出贡献⁴⁴。

另一方面,量子力学是现代物理最重要的基 础理论之一^[5]。其重要性广泛体现在我们的日常 生活和科学探索中:从以电子计算机为代表的半 导体工业到新奇的超导现象,从随处可见的化学 电池到宇宙中神秘的黑洞,世间万物的变化规律 都与量子力学密切相关。

† email: dldeng@mail.tsinghua.edu.cn DOI: 10.7693/wl20210202

然而, 对量子系统尤其是量子多体系统的研 究是非常困难的。实际研究中能够严格解析解决 的问题很少,对干绝大部分问题的求解,我们只 能依赖于数值方法。对于最一般的情形,数值方 法需要消耗指数量级的计算资源,这对于规模较 小的物理系统是可行的,但如果系统规模变大, 这一指数级的要求在经典计算体系下就难以满足 了¹⁶。1998年诺贝尔化学奖得主 Walter Kohn 将这 一问题描述为"指数墙(exponential wall)"困 难^[7]。为此,物理学家做了大量的努力,发展了 一系列计算方法,著名的蒙特卡罗算法以及重正 化群算法就是典型代表。但是这些方法并不是通 用的,分别有着各自的适用条件。比如蒙特卡罗 算法在应用于一些有阻挫系统时会出现符号问 题,从而使得算法需要指数级的时间;而密度矩 阵重正化群算法一般仅适用于一维低纠缠熵系统。

在人工智能领域中,一个类似的问题是维度 灾难(curse of dimensionality)。维度灾难最早是由 动态规划先驱、著名应用数学家Richard E. Bellman提出,描述了高维与低维数据集截然不同的 性质对计算问题带来的影响^[8]:随着数据维度增 加,有限规模的数据在空间中的分布会逐渐稀 疏,从而失去统计意义。这就要求在一般情况 下,我们需要非常大的数据规模来获得数据集的 统计特征,但是这会对计算资源带来严重负担。 经过多年的发展,人工智能领域提出了许多用于 处理高维问题的方法和工具。人工神经网络就是 一个应用非常广泛的例子,可以在一定程度上缓 解维度灾难带来的困难。简单来说,人工神经网 络可以看成是一个普适的函数拟合器。通过调节 网络参数,它可以用来拟合任何光滑函数^[9]。

由于指数墙困难和维度灾难的相似性,一个 自然的想法是可以用神经网络处理复杂的量子问 题。如可以用神经网络识别不同的量子物态以及 研究它们之间的相变(参见《物理》2017年第9期 蔡子的专题文章)。另一方面,我们也可以用神经 网络来表示量子态,其主要思想是把神经网络当 成变分波函数,通过调节网络参数来逼近目标波 函数(如多体系统的基态),进而求解所关心的物 理问题。传统的量子多体变分波函数方法需要物 理学家针对所求解的问题设计特定的变分函数, 而神经网络量子态方法可以使用相对普适的结 构,对于先验知识的依赖程度较低。此外,人工 智能领域里发展的一些优化神经网络的方法也可 以用于神经网络量子态,提高算法效率。

近年来,通过神经网络量子态的方法求解量 子多体问题受到了广泛关注^[10-12]。当前,这是一 个非常活跃的前沿研究方向。本文将介绍不同神 经网络量子态的物理性质与典型应用场景,以及 此方向的最新进展。所涉及的神经网络包括受限 玻尔兹曼机,深度玻尔兹曼机,前馈神经网络, 与循环神经网络等。典型应用包括:求解量子多 体系统的基态及动力学演化,探测量子非定域 性,量子层析,以及计算交错时序关联函数等。 希望通过本文的讨论,读者能感受到神经网络量 子态的魅力。众所周知,基于神经网络的智能程 序 AlphaGo^[13]与 AlphaFold^[14]分别在围棋与预测蛋 白质结构方面取得了里程碑式的突破。我们期望 神经网络量子态能把这些突破延续到解决复杂的 量子多体问题中来。

2 量子态的神经网络表示

在量子力学中,一个封闭的、不与外界产生 关联的物理系统的全部可能状态组成一个希尔伯 特空间,每个特定的物理状态由该空间中的一个 矢量描述。希尔伯特空间在数学上是线性空间, 因此在确定其基矢之后,每一个物理状态对应的 矢量可以表示为选定基矢量的线性叠加。在实际 物理问题中,我们经常需要处理包含多个子系统 的情况,系统的希尔伯特空间维数为各子系统对 应空间维数的乘积^[15]。比如,假设我们需要描述 包含N个自旋粒子的量子系统,每一个粒子自旋 可以取上下两种可能,其对应希尔伯特空间维数 为2,那么整个系统的自旋状态就有 2^N种可能, 从而总希尔伯特空间维数为 2^N。因此,表示最一 般情况下的波函数需要指数量级的计算资源。这 给数值求解量子多体问题带来了极大挑战。

幸运的是,人们关心的物理状态一般还受到 某些限制,比如对称性的限制或者是某些物理观

图1 神经网络量子态示意图 (a) 生物大脑中的神经元; (b)感知机; (c)生物神经网络; (d) 人工神经网络; (e) 量子态的神经网络表示

测量的限制,每一个子系统并不是完全独立的, 子系统状态会互相影响,从而整体系统可能的状态只占据了希尔伯特空间中的很小一部分。原则 上可以针对不同的物理系统,利用具有特定结构 的表示方法,在使用相对较少的计算资源情况下 表示这些物理状态^[5]。著名的张量网络就是一个 典型的例子^[16]。物理中一般使用纠缠熵(entanglement entropy)来刻画量子系统之间的关联强 度。张量网络可以有效表示纠缠熵满足面积定律 (即纠缠熵与子系统的表面积成正比)的物理状态^[17]。在这里,"有效"指的是只需要多项式量级 的计算资源。另一个例子就是本文将要重点介绍 的神经网络量子态。

神经网络由大量的节点(神经元)及它们之间 的相互连接构成,如图1所示。每个节点包含一 种特定的输出函数,称为激活函数。每两个节点 间的连接代表对于通过该连接信号的加权值,称 为权重。神经网络就是通过这种方式来简单模拟 人类的大脑。网络的输出则取决于网络的结构、 连接方式、权重和激活函数。神 经网络中的神经元通常被排列成 层状结构,第一层被称为输入 层,数据由这一层输入。最后一 层被称为输出层,中间层被称为 隐藏层。如果一个神经网络有多 于两层的结构,我们通常称其为 深度神经网络,基于此构建的机 器学习模型称为深度学习。依据 具体网络结构和信息传播方向的 不同,神经网络又可以分为很多 种。常见的神经网络有前馈神经

网络、卷积神经网络、玻尔兹曼机、循环神经网 络等。本质上,量子波函数是一个函数,而神经 网络是一个普适的函数拟合器。因此,我们可以 用神经网络表示量子态。

2.1 受限玻尔兹曼机

受限玻尔兹曼机(restricted Boltzmann machine, RBM)是一类应用非常广泛的神经网络,其 在数据降维、特征学习、图片生成、自然语言处 理等场景中都有重要应用^[18]。它是一个两层的神 经网络,其中一层称为可视层,另一层称为隐藏 层。可视层中的神经元可以连接到隐藏层,而同 层神经元之间不能相连。

考虑一个由N个量子比特组成的系统,其量 子态的一般形式为 $|\Phi\rangle = \sum_{\sigma} \psi(\sigma) |\sigma\rangle$,其中 $\sigma = (\sigma_1, \sigma_2, ..., \sigma_N)$ 表示一个可能的构型。 $\psi(\sigma)$ 可 以看成是一个函数,输入为 σ ,输出为一个复数 $\psi(\sigma)$,表示分量 $|\sigma\rangle$ 对应的振幅和相位信息。如 图2所示,可以用一个可视层有N个神经元(对应 N个量子比特),隐藏层有M个神经元的 RBM 来 表示 $\psi(\sigma)^{[19]}$

$$\psi(\boldsymbol{\sigma}) = \sum_{\boldsymbol{h}} e^{\sum a_i \sigma_i + \sum b_j h_j + \sum w_{ij} \sigma_i h_j}$$

其中 $h = (h_1, h_2, \dots, h_N)$ 表示隐藏神经元的可能构型,每个神经元有两个可能的取值 $\sigma_i = \pm 1$ 和 $h_i = \pm 1$, a_i , $b_i = w_i$ 分别表示网络的偏置和连接

参数。为简单起见,我们称由受限玻尔兹曼机所 表示的量子态为RBM态。

数学上可以证明,当*M*取值足够大时,受限 玻尔兹曼机可以以任意精度逼近任何光滑函数。 因此,原则上量子态的受限玻尔兹曼机表示是完 备的,任何量子态都可以用受限玻尔兹曼机表 示。实际应用中,*M*一般随*N*多项式增大,所以 RBM表示量子态所需要的参数个数也是随*N*多项 式增加,而不是指数增加。如此,RBM态在解决 某些量子多体问题的时候就可能可以绕过"指数 墙"困难。

与张量网络表示不同,受限玻尔兹曼机可以 有效表示具有大纠缠熵的量子态^[20]。这得益于可 视神经元与隐藏神经元的长程连接。事实上,我 们可以解析构造一个满足纠缠熵体积定律(即纠缠 熵与子系统体积成正比)的RBM态,其所包含的 参数个数随N仅为线性增加。而如果用常规的张 量网络表示同样的量子态,所需的参数个数随N 是指数增加的。这体现了神经网络在表示大纠缠 熵的量子态方面的独特优势。

如果我们限制只有近邻的可视神经元能连接 到同一个隐藏神经元,这样可以进一步降低参数 规模及优化难度,所得到的量子态称为短程 RBM 态。由于这个限制,任意可视神经元只关联到其 附近的神经元。因此,所有短程 RBM 态都满足纠 缠熵面积定律。

短程RBM可以严格表示一些有趣的奇异量子态,如拓扑态、超图态等。拓扑态的一个重要例子是环曲面码态(toric-code state)^[21],它是Alexei

Kitaev提出的环曲面码哈密 顿量(图 3(a))的基态,在拓 扑量子计算^[22]与量子纠错中 极为重要。图 3(b)简要描述 了环曲面码态的短程 RBM 表示。在环曲面码态的基 础上,作用弦算符(即由不 同格点泡利矩阵张量积所 得算符)可以得到系统的激 发态。如图 3(c)所示,此激 发态含有4个准粒子,分别位于弦算符 *P*^{*}₁ 与 *P*^{*}₁ 两端。有意思的是,这些激发态都可以用短程 RBM 严格表示,且所需要的参数个数只随系统 规模线性增加^[23]。基于此,我们有一个直接推 论,由短程 RBM 表示的环曲面码态及其激发态 都满足纠缠熵面积定律。而传统方法证明此结论 需要涉及比较复杂的数学工具(如商群)。

以上,我们讨论了量子系统纯态的 RBM 表示。实际中的量子系统不可避免地受到环境的干扰,其状态是一个混合态,需要用密度矩阵算符来描述。受限玻尔兹曼机也可以用来表示混合态^[24]。需要指出的是,为满足密度矩阵半正定性的要求,表示混合态时受限玻尔兹曼机的参数需要满足特定的条件。此外,通过附加行列式或使用 Grassmann 代数的方法,受限玻尔兹曼机也可以用来表示费米子系统的量子态^[25, 26]。

2.2 深度玻尔兹曼机

受限玻尔兹曼机可以有效表示一些有趣的量 子态,但其表示能力有限。例如,它不能有效表 示一些可以展示量子优势(quantum supremacy)的 态,如二维团簇态通过特殊幺正变化所得的 态^[27]。这个结论可以从直观上理解,由于受限玻 尔兹曼机简单的结构,其所表示的量子态可以通 过有效算法求得。假设其能有效表示可以展示量 子优势的态,这就意味着经典计算机可以有效模 拟这个量子态,这与此量子态可以展示量子优势 是矛盾的。

图3 受限玻尔兹曼机表示拓扑态 (a)环曲面码哈密顿量;(b)基态的RBM表示;(c)含4个 准粒子的激发态

为加强受限玻尔兹曼机的表达能力,可以在 原有网络上再加一层隐藏层,所得网络称为深度 玻尔兹曼机(deep Boltzmann machine,DBM)。在 计算复杂度理论中,一个被普遍接受但至今无法 证明的猜想是复杂度的多项式层级不会塌缩,著 名的 P≠NP 猜想是这个猜想的一个特例。在假设 以上猜想成立的情况下,可以证明:DBM 相比 RBM 在表达能力上可以有指数级的优势。存在一 些量子态,如果用 RBM 表示需要指数级的参数, 而DBM 只需要多项式规模的参数^[28]。

2.3 前馈神经网络

前馈神经网络是研究最早和最简单的神经网 络之一,也是目前应用最广泛,发展最迅速的人 工神经网络之一^[18]。其神经元分层排列,每个神 经元只与前一层神经元相连。信息从输入层逐层 传递到输出层,单向传播无反馈。与受限玻尔兹 曼机一样,前馈神经网络也可以用来表示量子 态^[29]。其输入层所含神经元数目对应所考虑量子 系统的粒子数,输出层为单个神经元,输出一个 复数,表示量子态对应分量的振幅和相位信息。

对于非常复杂的量子态,我们可以将波函数 分作两个部分:波函数绝对值与对应的符号,并 分别使用两个前馈神经网络表示。在实际应用中 可以观察到,对于简单的量子态,前馈神经网络

可以准确学习到其对应的符号规则,对于一些复杂的量子态前馈神经网络也能学习到比较高的精度,这证实了利用前馈神经网络处理量子态的有效性^[29]。

2.4 其他神经网络

人工智能领域针对不同的问题设计了多种多 样的神经网络,原则上所有类型的神经网络都可 以用于表示量子态。不同的网络有不同的结构, 能有效表示的量子态以及网络训练的时间复杂度 也不尽相同。在实际应用中,我们可以根据具体 问题选择不同的神经网络^[18]。比如循环神经网络 (recurrent neural network, RNN)非常适合处理序 列数据,在机器翻译、语音识别以及文本生成等 领域有着广泛的应用。可以将多体系统中量子比 特构型视为序列数据,从而利用循环神经网络来 表示量子多体态^[30]。卷积神经网络(convolutional neural network, CNN)则是另一类被广泛使用的深 度神经网络,适合图像处理、行为认知、迁移学 习等场景。文献[31]表明,卷积神经网络也可以 用来表示量子态,如前面提到的环曲面码态。

3 神经网络量子态的应用

如前所述,人工神经网络可以非常有效地表 示多体量子态,其在量子物理,尤其是解量子多 体问题中有很广泛的应用。图4归纳了当前神经 网络量子态的主要应用。接下来,我们简要介绍 部分近期的相关工作,主要侧重于RBM量子态的 应用。

3.1 求解量子系统基态和动力学演化

一个孤立封闭的量子系统可以由哈密顿量 描述,其演化过程满足薛定谔方程。求解给定 哈密顿量的基态和动力学演化是量子物理中常 见的基本问题。对于少数特殊的模型,如一维 伊辛模型(Ising model),其基态和动力学可以通 过解析的方法严格求解。然而,实际研究中能 够解析求解基态和动力学的情况很少,我们需 要依赖数值方法。

利用神经网络求解基态和动力学的核心想法 是把神经网络量子态看成变分函数,通过梯度下 降算法优化网络参数求解相应问题。以受限玻尔 兹曼机为例,G. Carleo 和 M. Troyer 首先求解了 几个典型的量子磁性模型(如伊辛模型、海森伯模 型)的基态及动力学,并与传统的密度矩阵重正化 群等方法进行了比较^[19]。结果表明,神经网络的 方法使用较少的参数就得到了相近精度的基态能 量和动力学演化,这在一定程度上展示了神经网 络方法的优越性。

值得指出的是,对于最一般情形求解基态和 动力学演化可以证明是NP问题。因此,神经网络 的方法也不能有效求解所有量子系统的基态和演 化。当前的研究表明,其在解决涉及大量子纠缠 与高维系统的问题中相比传统方法可能有优势, 但是这一优势还没有得到确切的证明。如何判断 给定哈密顿量的基态和动力学是否可以通过神经 网络的方法有效求解是此领域里一个亟待解决的 重要问题。这一问题的解决可能需要发展新的物 理概念和数学工具。

3.2 交错时序关联函数

交错时序关联函数(out-of-time ordered correlator, OTOC)最早由A. Larkin与Y. Ovchinnikov在 1969年研究超导理论时提出^[32]。经过几十年的发 展,OTOC在表征量子混沌,量子信息置乱(information scrambling),动力学相变等研究中都有重 要应用。此外,其还可以给通过Ads/CFT对偶研 究量子引力与黑洞带来新的启示。最近,实验测 量OTOC也在离子阱、固态自旋、玻色一爱因斯 坦凝聚等系统中实现。

考虑量子多体系统中在空间上分开的两个局 域算符 W 与 V,其对应的OTOC 定义为

$$F(t) = \left\langle W(t)^{\dagger} V^{\dagger} W(t) V \right\rangle ,$$

其中 W(t)=e^{ith} We^{-ith} 为 W在海森伯绘景中的时间演 化算符。不难看出,OTOC 的物理意义是描述一

图5 约翰·斯图尔特·贝尔(John Stewart Bell, 1928.6.28-1990.10.1)。图片来源于网络

个局域扰动传播一段时间后,在另一个地方被探测到的物理现象。数值上,计算多体系统的OTOC是非常困难的,其复杂程度要大于基态或动力学演化的求解。文献[33]提出了OTOC的神经网络求解办法,其核心思想是把OTOC看成是两个随时间演化量子态的交叠,从而通过计算态的演化与交叠来求解。

3.3 量子非定域性

非定域性是量子系统一个非常奇特的性质, 是量子物理与经典物理最核心的区别之一^[34]。它 描述比量子纠缠更强的关联——任何表现非定域 性的量子态一定是纠缠的,反之则不一定成立。 在实际应用中,量子非定域性是构建设备无关量 子技术,如无条件安全量子密钥分配、自认证随 机数产生器等,不可或缺的资源。对量子非定域 性的思考和研究最早可以追溯到20世纪初发生在 爱因斯坦和玻尔之间关于"上帝是否会掷骰子" 著名争论^[35]。1964年,约翰·斯图尔特·贝尔 (John Stewart Bell,图5)提出了著名的贝尔不等 式^[36]。从此,量子非定域性可以通过实验测试贝 尔不等式的破坏来定量刻画。

然而,由于存在指数墙困难,在量子多体系

统中研究非定域性变得极为不易。在文献[37] 中,本文作者之一把机器学习的方法引入到了量 子多体非定域性的研究中。其核心思想是把在量 子多体系统中探测非定域性的问题转化为求解哈 密顿量基态能量问题,从而可以利用上述神经网 络量子态的方法处理。具体来说,对干给定的量 子多体系统,其所有可能的经典关联组成一个高 维空间的多面体,多面体的每一个面对应一个贝 尔不等式,如图6所示。初始时,我们随机产生 一个RBM 量子态,其对于给定的观测量一般只表 现出经典关联。通过不断地优化RBM的参数,其 所表示的量子态逐渐超越多面体的一个面(即破坏 对应的贝尔不等式),展示出量子非定域性。值得 指出的是,神经网络量子态在探测多体非定域性 问题中有独特优势,可以解决一些用传统方法无 法解决或极为困难的问题,比如计算随机全关联 系统贝尔不等式最大破坏值。

3.4 求解开放系统稳态和动力学

孤立量子系统演化过程遵循薛定谔方程,而 实际系统往往不可避免地与环境发生作用,因此 很多情况下并不能当作孤立系统处理。对于与环 境弱耦合的开放系统,其状态的演化可以近似认 为仅与当前状态相关,而与之前的演化过程无 关,从而通过玻恩一马尔可夫近似,可以导出开 放系统所满足的演化方程,即Lindblad主方程^[38]:

$$\dot{\rho} = \mathcal{L}\rho = -\mathrm{i}[H,\rho] + \sum_{j} \frac{\gamma_{j}}{2} (2c_{j}\rho c_{j}^{\dagger} - c_{j}^{\dagger}c_{j}\rho - \rho c_{j}^{\dagger}c_{j})$$

其中L为刘维尔超算符,H表示系统哈密顿量, ρ 为密度矩阵, $c_j \subseteq \gamma_j$ 分别表示耗散算符与耗散 强度。

与孤立系统类似,神经网络的方法也可以用 来求解开放量子系统的稳态与动力学演化,此时 需要使用密度矩阵的神经网络表示^[24]。与孤立系 统不同的是,开放量子系统的能量不再是守恒 量,因此不能通过对能量的变分来求解。但是, 我们可以考虑优化变分近似演化与精确演化之间 的距离或者通过Choi—Jamiołkowski 同构把主方 程转化为有效哈密顿量方程来求解。与之相关 地,我们在文献[39]中进一步把神经网络的方法 推广到了刘维尔能隙的求解中。

3.5 量子态层析

量子态层析(quantum tomography)是通过对很 多份相同量子态的测量来估计一个未知的量子 态^[15]。它是校准量子系统,检验量子操作的重要 技术。同样的,由于希尔伯特空间维度随系统规 模指数增大,多体系统的量子态层析也变得极为 困难。以谷歌公司2019年实现量子优势的实验为 例^[40],其量子线路涉及53个量子比特,对如此大 规模的量子态层析最直接的方法需要确定 2⁵³≈10¹⁶个参数,即使是存储这些参数也至少需 要10⁵ TB的存储空间,远大于当前世界上最先进 的超级计算机的内存空间。

神经网络可以有效表示部分量子态,其所需 参数个数只随系统规模多项式增加。因此,通过 神经网络的方法进行量子态层析只需要确定多项 式规模的参数,可极大地减少所需资源。事实 上,神经网络量子态层析已经被多篇论文提 出^[30, 41],并得到了较多关注。最近,部分相关的 理论方案也在实验上得到了验证^[42]。

4 展望

神经网络量子态是最近几年蓬勃发展的交叉 前沿方向。当前,这个方向的研究已经取得了一 些令人兴奋的成果。然而,总体来说其发展还处 于初级阶段,很多重要基本问题亟待解决。首 先,神经网络表达量子态为何有效及其局限性并 未被完全理解。给定一个量子态,我们无法有效 判断它是否可以用某个神经网络有效表达。这与 矩阵直积态或更广的张量网络态在早期的发展相 似。由于量子信息领域的飞速发展,现在我们知 道量子纠缠是张量网络有效表示量子态的关键, 也是判断具体问题能否用相关算法有效解决的前 提。然而,量子纠缠并不是神经网络表达量子态 的核心要素,理解神经网络有效性及局限性可能 需要发展新的物理概念与数学工具。其次,神经 网络量子态的"杀手级应用"还未发现。当前 已有的研究大多数还处在原理演示阶段。人们 发现了很多问题可以用神经网络解决,但这些

参考文献

- Stuart R, Peter N. Artificial Intelligence: A Modern Approach. Prentice Hall Press, 2009
- [2] McCulloch W S, Pitts W. Bull. Math. Biol., 1943, 5:115
- [3] Jordan M T, Mitchell T M. Science, 2015, 349: 255; LeCun Y, Bengio Y, Hinton G. Nature, 2015. 521:436.
- [4] https://awards.acm.org/about/2018-turing
- [5] Griffiths D, Schroeter D. Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press, 2018
- [6] Coleman P. Introduction to Many-Body Physics. Cambridge University Press, 2015
- [7] Kohn W. Rev. Mod. Phys., 1999, 71:1253
- [8] Marimont R B, Shapiro M B. IMA J. Appl. Math., 1979, 24:59
- [9] Graupe D. Principles of artificial neural networks. World Scientific, 2013
- [10] Das Sarma S, Deng D L, Duan L M. Phys. Today, 2019, 72:48
- [11] Melko R G, Carleo G, Carrasquilla J et al. Nat. Phys., 2019, 15: 887
- [12] Carleo G et al. Rev. Mod. Phys., 2019, 91:045002
- [13] Silver D, Huang A, Maddison C et al. Nature, 2016, 529:484
- [14] Senior AW, Evans R, Jumper J et al. Nature, 2020, 577:706
- [15] Nielsen M A, Chuang I L. Quantum and Quantum Information (10th. ed.). Cambridge University Press, 2010
- [16] Orus R. Ann. Phys. (N. Y.), 2014, 349:117
- [17] Eisert J, Cramer M, Plenio M B. Rev. Mod. Phys., 2010, 82:277
- [18] Goodfellow I, Bengio Y, Courville A. Deep Learning. The MIT Press, 2016
- [19] Carleo G, Troyer M. Science. 2017, 355:602
- [20] Deng D L, Li X, Das Sarma S. Phys. Rev. X, 2017, 7:021021

问题大多数也可以用传统方法处理,神经网络 并不是唯一解决途径。再次,如何利用神经网 络方法有效解决强阻挫量子磁性系统或强相互 作用费米子系统相关问题仍是未解之谜。这些 问题是量子多体物理中极为重要,却最具挑战 性的问题。

总之,神经网络量子态在机器学习与量子物 理之间架设了新的桥梁。这个方向的研究有利于 不同学科之间的交叉融通,对机器学习与量子物 理的发展都大有裨益。当前,这个方向正在蓬勃 发展,挑战与机遇并存。鉴于AlphaGo与Alpha-Fold的成功,我们有理由期待未来神经网络量子 态在解决复杂的量子多体问题中取得重要突破, 大放异彩。

- [21] Kitaev A Y. Ann. Phys., 2003, 303:2
- [22] Nayak C et al. Rev. Mod. Phys., 2008, 80:1083
- [23] Deng D L, Li X, Das Sarma S. Phys. Rev. B, 2017, 96:195145
- [24] Alexandra N, Vincenzo S. Phys. Rev. Lett., 2019, 122:250501;
 Hartmann M J, Carleo G. Phys. Rev. Lett., 2019, 122:250502;
 Filippo V, Alberto B, Nicolas R *et al.* Phys. Rev. Lett., 2019, 122:250503
- [25] Huang Y, Moore J E. 2017, arXiv: 1701.06246
- [26] Glasser I et al. Phys. Rev. X, 2018, 8:011006
- [27] Gao X, Wang S T, Duan L M. Phys. Rev. Lett., 2017, 118: 040502
- [28] Gao X, Duan L M. Nat Commun., 2017, 8:662
- [29] Cai Z, Liu J. Phys. Rev. B, 2018, 97:035116
- [30] Carrasquilla J, Torlai G, Melko R G et al. Nat. Mach. Intell., 2019, 1:155
- [31] Carrasquilla J, Melko R. Nature Phys., 2017, 13:431
- [32] Larkin A, Ovchinnikov Y N. Sov. Phys. JETP, 1969, 28:1200
- [33] Wu Y, Duan L M, Deng D L. Phys. Rev. B, 2020, 101:214308
- [34] Brunner N et al. Rev. Mod. Phys., 2014, 86:419
- [35] Einstein A, Podolsky B, Rosen N. Phys. Rev., 1935, 47:777
- [36] Bell J S. Physics Physique Fizika, 1964, 1:195
- [37] Deng D L. Phys. Rev. Lett., 2018, 120:240402
- [38] Breuer H, Petruccione F. The Theory of Open Quantum Systems. Oxford University Press, 2007
- [39]Yuan D, Wang H, Wang Z et al. 2020, arXiv:2009.00019
- [40] Arute F, Arya K, Babbush R et al. Nature. 2019, 574:505
- [41] Torlai G et al. Nature Phys., 2018, 14:447
- [42] Palmieri A M, Kovlakov E, Bianchi F et al. npj Quantum Inf., 2020, 6:20