薄膜异质结及二维材料中的磁斯格明子*

王智文1 梁敬华1 杨洪新^{1,2,†}

(1 中国科学院宁波材料技术与工程研究所 宁波 315201)

(2 中国科学院大学材料科学与光电技术学院 北京 100049)

Interfacial and low-dimensional magnetic skyrmions

WANG Zhi-Wen¹ LIANG Jing-Hua¹ YANG Hong-Xin^{1,2,†}
(1 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)
(2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China)

摘要 磁斯格明子因具有拓扑稳定、移动速度快、尺寸小、驱动电流密度低等 优异性质引起了人们的广泛关注。它被视作未来超高密度磁存储和逻辑功能器件的理想信 息载体。基于磁斯格明子的自旋电子学器件具有非易失、高读写速度、高存储密度以及低 功耗的优势,从而能满足人们对高性能器件的要求。此外,拓扑性与磁性的结合使得磁斯 格明子成为研究拓扑磁性物理的良好平台。文章简要介绍了磁斯格明子的发展概况及其拓 扑物理性质,并着重讨论薄膜异质结及二维材料中磁斯格明子的研究进展,为今后进一步 探索磁斯格明子相关研究领域抛砖引玉。

关键词 拓扑磁性,磁斯格明子, Dzyaloshinsky—Moriya相互作用

Abstract Magnetic skyrmions, nanomagnetic structures with high topological properties, high speed, small size, and low motion-driving current density, have received wide attention. They may be expected to function as ideal information carriers for ultra-high density magnetic storage and logic function devices in the future. These magnetic skyrmion-based devices have the advantages of non-volatile high-density storage, high read/write speed, and low-energy consumption. Moreover, the combination of topology and magnetism renders them a good platform for the study of topological magnetism. Here, we briefly describe the history and topological physics of magnetic skyrmions, then discuss their use in magnetic thin films and two-dimensional magnetic materials. We hope that this review can pave an avenue for further studies of skyrmion-based spintronics.

Keywords topological magnetism, magnetic skyrmion, Dzyaloshinsky-Moriya interaction

2021-09-15收到

^{*} 国家自然科学基金(批准号: 11874059)、中国科学院前沿科学重点研究计划(批准号: ZDBS-LY-7021)、浙江省 自然科学基金(批准号: LR19A040002)资助项目

[†] email: hongxin.yang@nimte.ac.cn DOI: 10.7693/wl20220703

1 引言

20世纪以来,人们在以半导体器件为代表的 微电子学领域取得了重大成就。超大规模集成电 路技术的飞速发展为高性能电子学器件的商用化 铺平道路,促使人类社会进入了快速发展的信息 化时代。然而随着信息技术的发展,人们对器件 的集成度、尺寸、稳定性以及功耗等的要求也越 来越高。因此,寻找新的信息存储以及处理机制 变得尤为重要。近年来,在凝聚态物理发展过程 中, 拓扑物理效应引起了人们极大的研究兴趣, 如量子霍尔效应(quantum Hall effect)^[1]、量子反常 霍尔效应(quantum anomalous Hall effect)^[2]、拓扑 绝缘体(topological insulator)^[3]以及本文着重介绍的 磁斯格明子(magnetic skyrmion)^[4]等拓扑现象。这 些丰富的拓扑物理现象不仅可以深化人们对微观 世界的认识,还能推动高性能自旋电子学器件的 技术革新,进而满足人们对低功耗、高读写速度 及高密度存储器件的需求。特别地,受拓扑保护 的磁斯格明子将有望成为下一代非易失性存储自 旋电子学器件的信息单元。

图 1 典型的磁斯格明子构型^[11]与DM相互作用示意图^[18] (a)奈尔型磁斯格明子;(b)布洛赫型磁斯格明子,其中下图 是上图的极射赤面投影;(c)界面DM相互作用;(d)块体DM 相互作用,其中SOC是自旋轨道耦合

斯格明子是由英国核物理学家 Skyrme 在1962 年研究介子与重子间相互作用的统一场理论时提 出的一类拓扑孤子(soliton)^[5]。后来,科学家们在 其他研究领域中也发现了类似的斯格明子拓扑构 型^[6,7]。在磁性材料领域, Belavin 等^[8]在1975年首 次提出了磁斯格明子的概念。2006年, Rößler等^[9] 预言了在空间反演对称性破缺的磁性薄膜或手性 磁体中能实现自发稳定的磁斯格明子态。直到 2009年, Muehlbauer等^[10]才首次证实了在手性磁 体MnSi单晶中存在拓扑稳定的磁斯格明子。磁斯 格明子是一类新型的二维手性拓扑磁结构。通过 分别对单位球体上的刺猬型(hedgehog-like)和涡旋 型(vortex-like)自旋结构作极射赤面投影可以得到 两类典型的磁斯格明子结构: 奈尔型和布洛赫型, 如图 1(a), (b)所示^[11]。值得注意的是, 两者的区 别在干布洛赫型的自旋旋转面垂直干径向截面, 而奈尔型自旋旋转面平行于径向截面。

从磁斯格明子首次被实验证实至今,人们结 合材料生长、输运测量和磁结构成像以及理论模 拟计算等成熟的研究手段,在探索磁斯格明子的 内禀机制以及实际运用方面取得许多重大发现。 首先,根据材料维度,磁斯格明子材料体系可大 致分为三类:(1)非中心对称结构的B20型块体材 料(如 MnSi^[10]、FeCoSi^[12]、FeGe^[13]等); (2)界面空 间反演对称破缺的磁性薄膜异质结(如Ir(111)/ Fe^[14]、Ir(111)/PdFe^[15]等); (3)本征对称破缺的二维 磁性材料(如二维磁性Janus 结构 YXX'(Y=V, Cr, Mn, X, X'=S, Se, Te, X≠X')^[16, 17])。丰富的材 料体系为磁斯格明子的研究提供多种选择。此外, 人们对磁斯格明子的产生和湮灭条件、动力学特性 以及调控手段等领域进行了非常全面且深入的研 究,并提出了基于磁斯格明子的赛道磁存储[18]、自 旋逻辑[19]和自旋纳米振荡器[20]等多种自旋电子学 器件。这些研究发现为推动磁斯格明子器件实用 化奠定了基础。目前对磁斯格明子的相关研究已 然成了自旋电子学领域非常重要的研究方向之一。

本文将简要介绍磁斯格明子的起源、成因以 及材料体系,探讨磁斯格明子中的拓扑物理性质, 并着重介绍磁性薄膜材料及二维磁性材料中磁斯 格明子的研究进展,最后对磁斯格明子未来的研 究方向进行展望。

2 磁斯格明子拓扑物理基础

2.1 磁斯格明子与Dzyaloshinsky—Moriya相互 作用

在固体磁性系统中能诱导出稳定磁斯格明子 态的机制有以下4种:(1)Dzyaloshinsky—Moriya (DM)相互作用^[21, 22];(2)长程磁偶极相互作 用^[23, 24];(3)阻挫交换相互作用^[25];(4)四自旋交换 相互作用^[26]。相较于后三种机制,DM相互作用 是磁斯格明子研究领域中最受人们关注的一种。 在实验上可以很方便地通过改变材料结构和组分 对DM相互作用进行调控,并且它还可以作为面 内有效场辅助面内电流翻转磁矩方向,进而实现 低能耗的自旋轨道矩磁随机存储器。因此,通过 DM相互作用诱导的磁斯格明子具有尺寸小、驱 动电流低、易操控以及易产生湮灭等优势,从而 更有利于实现磁斯格明子器件的实用化。

在非中心对称的手性磁体以及界面反演对称 破缺的磁性薄膜等体系中,晶格空间反演对称性 破缺和强自旋轨道耦合效应共同导致了非线性 DM相互作用,其表达式为

$$H_{\rm DM} = -\boldsymbol{D}_{ij} \cdot \left(\boldsymbol{S}_i \times \boldsymbol{S}_j\right) , \qquad (1)$$

)

其中,*S*_i和*S*_j是任意的两个相邻自旋,*D*_{ij}是对应 的 DM 相互作用矢量。在空间反演对称变化下, 相邻自旋间发生反对称的交换作用,因此能量的 正负号变化反映了空间反演对称的破缺。此时整 个系统的哈密顿量可写为

$$H = -\sum_{\langle i,j \rangle} \left[J_{ij} \left(S_i \cdot S_j \right) + D_{ij} \cdot \left(S_i \times S_j \right) \right]$$
$$-\sum_{ij} g \mu_{\rm B} B \cdot S_i \quad , \qquad (2)$$

等式右边依次是海森伯交换相互 作用、DM相互作用以及外磁场 作用。其中, J_{ij} 是海森伯交换相 互作用系数, D_{ij} 是公式(1)中的 DM相互作用系数,g是Lande系 数, μ_{B} 是玻尔磁矩,B是外磁场。 从(2)式出发,人们发现当体系中的海森伯交换相 互作用、DM相互作用以及外磁场作用相互竞争 时,磁性系统中会出现异常丰富的手性磁结构, 如手性磁畴壁(chiral domin wall)、磁涡旋(vortex) 以及磁斯格明子态等。

实际上,磁斯格明子的手性特征与DM相互 作用的手性密切相关。在手性磁体中,晶体对称 破缺导致的块体DM相互作用趋向于诱导出布洛 赫型磁斯格明子,如图1(b),(d)所示^[11,18]。而磁 性薄膜异质结中,界面DM相互作用趋向于诱导 出奈尔型磁斯格明子,如图1(a),(c)所示^[11,18]。

2.2 磁斯格明子拓扑稳定性

上文提到,布洛赫型和奈尔型磁斯格明子间 的自旋构型差异很大,但两者可以通过连续形变 进行相互转换,因此这两种典型的磁斯格明子 是拓扑等价的。我们通过磁斯格明子的拓扑数 (topological charge) *S*^[27]

$$S = \frac{1}{4\pi} \iint q dx dy ,$$

$$q = \boldsymbol{m} \cdot \left(\frac{\partial \boldsymbol{m}}{\partial x} \times \frac{\partial \boldsymbol{m}}{\partial y}\right) ,$$
(3)

可以很好地描述磁斯格明子的拓扑性质,其中 *m*是空间*r*处归一化的自旋单位矢量。拓扑数*S* 的物理意义是磁斯格明子的单位自旋矢量绕单位 球体表面的周期倍数^[28]。磁斯格明子的拓扑数 $S = \pm 1$,而拓扑平庸的自旋结构,如铁磁态、反 铁磁态等,拓扑数为0。有趣的是,在实空间磁 斯格明子束(magnetic skyrmion bundles)中存在拓 扑数大于1的磁斯格明子态^[29]。值得注意的是,

图2 斯格明子与传导电子相互作用所产生的拓扑物理模型示意图 (a)在磁斯格明 子体系中电子同时受到外磁场**B**与新兴磁场**b**的作用^[11]; (b)拓扑霍尔效应与斯格明 子霍尔效应示意图^[30]

由偶极相互作用诱导的磁泡虽然其磁结构与磁斯 格明子类似,但它并不具备固定的拓扑数。磁斯 格明子的非平庸拓扑性提供了一个相对铁磁态的 能量势垒从而很好地保护其自旋结构^{118]}。更重要 的是,磁斯格明子具有尺寸有限的孤子属性,它 能在铁磁背景下长时间稳定存在且移动。因此利 用这一拓扑特性,磁斯格明子可被用作信息存储 及处理器件中的理想信息载体。

2.3 拓扑霍尔效应与斯格明子霍尔效应

由于磁斯格明子特殊的拓扑性质,当电流通 过它们时,传导电子和磁斯格明子之间的耦合作 用会对两者的运动状态产生显著影响。磁斯格明 子和运动电子间的耦合行为可用图2(a)^[11]所示的 物理模型来说明。首先假设具有电量为*q*。的电子 以*v*的速度沿*x*方向运动,在平行于*z*方向外磁场 *B*作用下产生的洛伦兹力*q*,*v*×*B*使电子朝+*y*方向

图3 (a)单层 Fe/Ir(111)中斯格明子晶体的磁构型,插图为实空间磁构型的傅里叶变换^[14];(b)PdFe/Ir(111)薄膜中单个磁斯格明子的产生与湮灭^[15];(c)磁斯格明子在Ta/CoFeB/TaO_x三层膜的受限几何结构中由电流诱导的成核过程^[36];(d)外场*B*=22 mT时,Pt/Co/Ir磁性薄膜体系中磁斯格明子的磁圆二色X射线吸收谱,其中插图为DM相互作用示意图^[37];(e)通过第一性原理计算得到的Co/Pt多层膜结构中DM相互作用的强度^[38]

偏转。但另一方面,磁斯格明子特殊的拓扑磁结 构会使其内部产生远大于外磁场B且方向相反的 新兴磁场b,受此影响电子将朝-y方向运动。因 此,电流通过磁斯格明子体系时会产生与普通霍 尔效应不同的拓扑霍尔效应。与此同时,磁斯格 明子会受到电子的反作用,从而向相反方向偏 转,此即斯格明子霍尔效应,如图2(b)所示^[30]。

3 薄膜材料中的磁斯格明子

1990年, P. Levy和A. Fert^[31]在研究掺杂重金 属的金属磁性体系时提出在空间反演对称破缺条 件下,金属体系中的磁性原子之间可以通过具有 强自旋一轨道耦合作用的重金属原子来传递DM 相互作用。后来人们把这种DM相互作用起源称 为Fert—Levy机制。在铁磁金属薄膜和重金属薄 膜组成的异质结中就有可能存在由这种机制产生 的界面DM相互作用。2015年,Yang等人发展了

> 一套基于密度泛函理论来研究DM 相互作用的计算方法^[32]。他们的 计算证实了在铁磁金属/重金属薄 膜异质结中,界面DM相互作用 的手性、大小、分布和能量来源 等微观机理与Fert—Levy机制预 言的结果是一致的。这也是首次 从第一性原理的角度出发证明了 界面DM相互作用的Fert—Levy 机制,揭示其正确物理图像。

> 2011年,Heinze等人^[14]利用 自旋极化扫描隧道显微镜观测到 单层 Fe/Ir(111)中存在大小仅为 1 nm的奈尔型磁斯格明子,如图 3(a)所示。这不仅是实验上首次 观测到的奈尔型磁斯格明子,还 是磁斯格明子发展至今实验上观 测到的最小尺寸。随后,Romming等人^[15]利用自旋极化扫描隧 道显微镜实现了对PdFe/Ir(111)中 单个磁斯格明子的写入和擦除操 作,如图3(b)所示。在Fe/Ir等单

层磁性薄膜中的斯格明子尺寸小并具有零场稳定 性,但只能在极低温下稳定存在,这限制了磁斯 格明子的实用化。因此,人们提出利用磁性薄膜/ 重金属的多层膜结构,通过改变材料组合和生长 厚度来调控层间相互作用^[33]、DM相互作用^[34]以及 垂直磁各向异性等磁性参数^[35],从而能更好地实 现高稳定温度、小尺寸以及良好动力学稳定性的 磁斯格明子相。

磁性薄膜/重金属异质结构及其多层膜结构 主要有两类: (1)重金属/磁性薄膜/金属氧化物(如 Pt/Co/MgO、Pt/CoFeB/MgO和Ta/CoFeB/TaO,等); (2)重金属/磁性薄膜/重金属(如Ir/Co/Pt和Pt/Co/Ta)。 比如,2015年Jiang等人^[36]利用磁控溅射的方式生 长了Ta/CoFeB/TaO,的多层膜结构,并通过光刻和 离子研磨制作成金属线。由于金属线的结构限制, 该对称破缺的多层膜结构在非均匀面内电流的驱 动下发生条形磁畴到磁斯格明子的转变,如图3 (c)所示。该结果表明空间发散电流诱导的自旋轨 道耦合力矩是动态产生室温磁斯格明子的有效方 法。随后, Fert等人^[37]利用扫描X射线透射显微镜 技术在低磁场下观测到非对称的Ir/Co/Pt多层膜结 构中存在尺寸小干100 nm 的室温孤立斯格明子, 如图3(d)所示。该多层膜结构中的重金属Ir和Pt 原子层同时诱导了强层间 DM 相互作用并且具有 累加效应,因此足以使磁斯格明子在室温下抵抗 热扰动。

借助于第一性原理计算方法,人们能更好地 理解这些磁性薄膜的界面DM相互作用贡献来源 氧化物多层膜结构中的DM相互作用具有累加效应,如图3(e)所示。此外,在重金属/磁性薄膜/重金属这类结构中,Yang等人^[32,39]发现虽然Ir/Co界面和Pt/Co界面的DM相互作用手性相反,但是在周期性重复结构(即Ir/Co/Pt)中的DM相互作用手性一致,因此同样具有DM相互作用的累加效应。

另外,最近实验上实现的反铁磁/铁磁薄 膜^[40]、稀土亚铁磁多层膜^[41]以及人工纳米盘^[42,43]等 结构进一步丰富了磁斯格明子材料体系,为有效 解决磁斯格明子的尺寸、稳定性以及移动速度等 问题提供了新颖的思路。值得强调的是,日益发 展成熟的磁控溅射技术是学术界与工业界的良好 纽带,为制备高质量的薄膜材料提供了强有力的 保障,从而为基于磁斯格明子的器件实用化奠定 了良好的技术基础。

和磁斯格明子稳定机制 等物理图像。比如, Yang等人^[38]通过第一性 原理计算发现在Pt/Co/ MgO纳米结构中,界面 DM相互作用主要来源于 重金属Pt/Co的界面。但 Co/MgO界面也具有较强 的且符号与Pt/Co界面一 致的DM相互作用,因此 该重金属/磁性薄膜/金属

約理・51卷 (2022年)7期

图4 二维 Janus 材料的独特性质与潜在应用示意图^[57]

4 二维材料中的磁斯格明子

除了上面提到的B20手性磁体、磁性薄膜以 及人工纳米结构等传统磁斯格明子材料体系,二 维范德瓦耳斯磁性材料由于其本征的二维属性以 及高可集成性在拓扑磁结构的研究中扮演着非常 重要的角色。

以石墨烯、氮化硼以及过渡金属硫化物等为 代表的二维范德瓦耳斯材料受到人们的极大关注, 它们展现出与其母相块体材料截然不同的电子结 构、光学和力学等特性^[4]。然而,真正意义上的 二维范德瓦耳斯磁性材料在很长一段时间内没能 被实现。根据Mermin—Wanger 定理^[45],在仅具有 各向同性海森伯铁磁交换耦合相互作用的二维体 系中无法建立铁磁长程序。但是,如果当磁性材 料的厚度减薄到几个原子层时仍能保持较大的磁 各向异性, 那么将有可能存在长程磁有序。2017 年, Zhang 等人^[46] 以及Xu 等人^[47] 分别在双层 Cr,Ge,Te,和单层Crl,中首次实现真正意义上的二 维磁性。这两个突破性的研究工作引起科学家极 大的研究兴趣,为基于二维磁性材料的自旋电子 学器件奠定了物质基础。随后,人们在实验上制 备出了更多的二维磁性材料,比如2018年Batzill 等人^[48]和Kawakami等人^[49]发现的二维室温铁磁材 料VSe,和MnSe,。二维磁性材料具有高质量的界 面和低的静电屏蔽场,从而能被外加应力、磁场

以及电场等手段有效地调控。例如,Zhang等人^[50] 通过离子调控的方式在Fe₃GeTe₂中也实现了室温 铁磁性。此外,Xu等人^[51]通过电场实现了双层 CrI₃磁矩的反转。

上述二维磁性材料都受到中心反演对称性的 保护,导致了这些材料中不可能具有 DM 相互作 用。这极大地限制了二维磁性材料在磁斯格明子 领域的研究。因此要求人们找到能有效打破中心 反演对称性保护的方法,从而有效地诱导出 DM 相互作用,进而在二维磁性材料中实现稳定的磁 斯格明子态。

2017年,Lu等人^[52]利用H₂等离子体将MoS₂的一层S原子剥离,并同时沉积一层Se原子,最终合成了二维Janus单层膜MoSSe。Janus结构具有空间反演不对称性,它通常通过成分截然不同的材料组成并具有明显的结构分层,从而出现非常优异的性质,比如Rashba自旋劈裂^[53]、面外压电极化以及面内增强的压电极化^[54–56]等,如图4所示。这使得二维Janus结构将在气体传感器、水解催化剂、电池及光电器件等领域产生巨大的作用^[57,58]。

类比于以上的非磁 Janus 结构,人们利用理论 计算预测了一系列的磁性二维过渡金属硫族 Janus 结构 YXX' (Y=V,Cr,Mn, X, X'=S, Se, Te, X≠ X'),如图 5(a)所示。比如,Liang 等人^[16]利用第一 性原理计算方法研究了含锰硫族化物 MnXY (X/Y= S, Se, Te, X≠Y)单层膜。MnXY 具有 C_{3y} 点群

结构,即Mn原子 层形成一个六角格 子并处于两种不同 。声子 前。声子 前。 子谱 閣表明 MnXY 单层膜具有较高 结构稳定性。计 算发现 MnSeTe和 MnSTe中的 DM 相互作用系数分别 高达 2.14 meV 和 2.63 meV, 该数 值能比拟Co/Pt(约

图6 (a) CrSeTe在10K温度下,其拓扑磁结构在外磁场和应力场的作用下发生转变^[59]; (b) 在不同温度和 磁场下 VSeTe和 VSSe 的自旋结构^[60]

图7 (a), (b) CrGe(Se, Te)₃的晶体结构示意图和磁结构示意图^[61]; (c), (d) Cr(I, X)₃(X=Br, Cl)的晶体结构示意图和磁结构示意图^[17]

3.0 meV)和Fe/Ir(约1.7 meV)等传统铁磁金属/重金 属多层薄膜材料体系的DM相互作用系数。进一 步分析发现, MnSeTe 和 MnSTe 中的 Te 元素对 DM 相互作用的贡献起了决定性作用,因此属于 Fert—Levy型DM相互作用。该机制表明,近邻 磁性Mn原子间的DM相互作用是通过非磁重金属 Te原子引起的电子间自旋轨道耦合散射的方式来 进行传递。最后,利用蒙特卡罗模拟确认了 MnSeTe 和 MnSTe 两种薄膜在低温和零磁场下会 自发呈现拓扑磁畴结构,如图 5(b)的(i)和(iv)所 示。若对 MnSeTe 和 MnSTe 两种薄膜施加外磁场 并逐渐增大其强度,拓扑迷宫磁畴的尺寸将逐渐 减小,而孤立磁斯格明子态会在铁磁背景下随机 分布(图(ii)和(v))。如进一步提高温度,孤立磁斯 格明子态的密度将逐渐降低直至完全消失,整个 系统将呈现铁磁态,如图(iii)和(vi)所示。此外, Cui等^[59]也发现CrSeTe薄膜中存在由DM相互作用 诱导的奈尔型磁畴壁,若进一步施加磁场会将其 转变为磁斯格明子态。与此同时,通过对CrSeTe 薄膜施加双轴应变可以有效地调控斯格明子的尺 寸和密度,如图 6(a)所示。Slimane 等^[60]计算发现 VSSe和VSeTe薄膜也存在很强的DM相互作用, 并且分别具有弱的面外磁各向异性和强的面内磁 各向异性。因此,VSeTe在面内磁场的作用下将 出现非对称的磁双半子态(bimeron),而对VSSe施 加3T的面外磁场时将诱导出磁斯格明子态,如 图 6(b)所示。

基于Janus结构打破空间反演对称性的思想也

被应用到了其他二维范德瓦耳斯磁性材料。 Zhang 等^[61]基于单层 CrGeTe, 预测出另一种稳定的 单层磁性Janus结构CrGe(Se, Te),,它具有很强的 DM相互作用以及垂直磁各向异性,如图7(a)所 示。因此,在无外磁场时也能自发形成纳米级的 奈尔型磁斯格明子和嵌套磁斯格明子(skyrmioniums)。分析发现该体系中DM相互作用与磁阻挫 效应间的竞争是稳定存在嵌套磁斯格明子的重要 因素。此外, Xu等^[17]则提出了Cr(I, X),(X=Br,Cl) 的Janus结构,如图7(b)所示,其中Cr原子形成了 六角网格并与底层I原子以及顶层的Br或Cl原子 共价连接,从而在该非对称结构中诱导出强DM 相互作用。计算表明 Cr(I, Br), 薄膜具有合适的 垂直磁各向异性,因此该结构中具有本征磁斯 格明子态。但是,具有较弱面内磁各向异性的 Cr(I, Cl),薄膜则需要在外磁场的作用下出现稳定 的磁双半子态。

5 总结与展望

磁斯格明子是受拓扑保护的纳米尺度上的自 旋结构。近20年的发展过程中,由于磁斯格明子 蕴含丰富的物理现象以及巨大的应用前景,相关 研究迅速成为人们的关注焦点。从在低温和外磁 场环境下的B20手性磁体中首次发现磁斯格明子, 到磁性多层薄膜中被证实存在室温磁斯格明子, 再到最近理论预言二维范德瓦耳斯磁性材料中也 存在磁斯格明子态,这些研究发现不断深化人们 对磁斯格明子的认识,并对优化磁斯格明子材料 体系提供了新的思路。尤其二维磁性材料的维度 以及高可集成性等优势为实现真正意义上的高密 度存储提供了强有力的保障。

目前,虽然人们关于磁斯格明子材料体系的 研究取得很大突破,但仍有很多问题需要进一步 解决。首先,对磁性多层薄膜结构而言,其磁斯 格明子的尺寸通常较大,不满足高密度存储要求 的小于10 nm的尺寸条件,因此降低磁斯格明子 尺寸显得尤为重要。此外,磁控溅射生长方式无 法避免磁性薄膜表面杂质和较大粗糙度,这些因 素会带来不均匀的DM相互作用、磁各向异性及 不同程度的钉扎效应,从而影响磁斯格明子传输

参考文献

[1] Von Klitzing K. Annu. Rev. Condens. Matter Phys., 2017, 8:13 [2] Liu C X et al. Annu. Rev. Condens. Matter. Phys., 2016, 7:301 [3] Hasan M Z, Kane C L. Rev. Mod. Phys., 2010, 82: 3045 [4] Fert A, Reyren N, Cros V. Nat. Rev. Mater., 2017, 2:17031 [5] Skyrme T H R. Nuclear Phys., 1962, 31: 556 [6] Bogdanov A N et al. Phys. Rev. E, 2003, 67:016602 [7] Ho T L. Phys. Rev. Lett., 1998, 81:742 [8] Polyakov A M, Belavin A A. JETP Letters, 1975, 22:503 [9] Rößler U K, Bogdanov A N, Pfleiderer C. Nature, 2006, 442: 797 [10] Muhlbauer S, Binz B, Jonietz F et al. Science, 2009, 323:915 [11] Lancaster T. Physics, 2019, 60: 246 [12] Yu X Z, Onose Y, Kanazawa N et al. Nature, 2010, 465:901 [13] Yu X Z, Kanazawa N, Onose Y et al. Nat. Mater. , 2010, 10: 106 [14] Heinze S, Von Bergmann K, Menzel M et al. Nat. Phys., 2011, 7:713 [15] Romming N, Hanneken C, Menzel M et al. Science, 2013, 341:636 [16] Liang J H et al. Phys. Rev. B, 2020, 101:184401 [17] Xu C S et al. Phys. Rev. B, 2020, 101:060404(R) [18] Fert A, Cros V, Sampaio J. Nat. Nanotech., 2013, 8:152 [19] Zhang X C, Ezawa M, Zhou Y. Sci. Reports, 2015, 5:9400 [20] Jin C D et al. Phys. Rev. Appl., 2018, 9:044007 [21] Dzyaloshinskii I J. Phys. Chem. Solids, 1958, 4:241 [22] Moriya T. Phys. Rev., 1960, 120:91 [23] Lin Y S, Grundy P J, Giess E A. Appl. Phys. Lett., 1973, 23:485 [24] Garel T, Doniach S. Phys. Rev. B, 1982, 26: 325 [25] Okubo T et al. Phys. Rev. Lett., 2012, 108:017206 [26] Heinze S, Von Bergmann K, Menzel M et al. Nat. Phys., 2011, 7:713 [27] Rajaraman R. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. Oxford: Elsevier Science & Technology, 1987 [28] Braun H B. Adv. Phys., 2012, 6:1 [29] Tang J, Wu Y D, Wang W W et al. 2020, arXiv:2108.02487

[30] Nagaosa N, Tokura Y. Nat. Nanotech., 2013, 8:899

的效率。因此,在实验上也应考虑如何进一步提 高薄膜的质量。此外,对二维磁性材料而言,其 磁斯格明子研究仅停留在理论阶段,在实验制备 上还面临着很大的挑战。目前实验上能成功制备 的室温二维磁性材料很少,并且在空气中的不稳 定性极大地阻碍了二维材料中磁斯格明子的发展。 因此,探索出更多的能形成稳定可控室温磁斯格 明子态的二维磁性材料变得非常关键。

基于磁斯格明子的自旋电子学器件真正实现 实用化还需要走很长的路。在磁斯格明子新材料 体系的探索和优化、动力学行为研究以及基于磁 斯格明子的器件设计等方面需要更多的科研工作者 合力完成,共同为磁斯格明子领域的发展而努力。

[31] Fert A. Mater. Sci. Forum, 1990, 59:439 [32] Yang H X et al. Phys. Rev. Lett., 2015, 115:267210 [33] Chen G et al. Appl. Phys. Lett., 2015, 106:242404 [34] Belabbes A, Bihlmayer G, Blügel S et al. Sci. Rep., 2016, 6:24634 [35] Zhang X C, Zhou Y, Ezawa M et al. Sci. Rep., 2015, 5:11369 [36] Jiang W J, Upadhyaya P, Zhang W et al. Science, 2015, 349:283 [37] Moreau-Luchaire C et al. Nat. Nanotech. 2016. 11:444 [38] Boulle O, Vogel J, Yang H X et al. Nat. Nanotech., 2016, 11:449 [39] Yang H X, Boulle O, Cros V et al. Sci. Rep., 2018, 8:12356 [40] Yu G, Jenkins A, Ma X et al. Nano Lett., 2018, 18:980 [41] Woo S, Song K M, Zhang X et al. Nat. Commun., 2018, 9:959 [42] Gilbert D A et al. Nat. Commun., 2015, 6:8462 [43] Li J, Tan A, Moon K W et al. Nat. Commun., 2014, 5:704 [44] Novoselov K S et al. Science, 2016, 353; aac9439 [45] Mermin N D, Wagner H. Phys. Rev. Lett., 1966, 17:1133 [46] Cheng G, Li L, Li Z L et al. Nature, 2017, 546: 265 [47] Huang B, Clark G, Navarro-Moratalla E et al. Nature, 2017, 546:270 [48] Bonilla M, Kolekar S, Ma Y J et al. Nat. Nanotech., 2018, 13:289 [49] O'Hara D J, Zhu T, Trout A H et al. Nano Lett., 2018, 18: 3125 [50] Deng Y J, Yu Y J, Song Y C et al. Nature, 2018, 563:94 [51] Huang B, Clark G, Klein D R et al. Nat. Nanotech., 2018, 13:544 [52] Lu A Y, Zhu H Y, Xiao J et al. Nat. Nanotech., 2017, 12:744 [53] Cheng Y C, Zhu Z Y, Tahir M et al. EPL, 2013, 102: 57001 [54] Dong L, Lou J V, Shenoy B. ACS Nano, 2017, 11:8242 [55] Zhang X, Cui Y, Sun L et al. J. Mater. Chem. C, 2019, 7:13203 [56] Zhang C, Nie Y, Sanvito S et al. Nano Lett., 2019, 19:1366 [57] Zhang L, Yang Z J F, Gong T et al. J. Mater. Chem. A, 2020, 8:8813 [58] Li R P, Cheng Y C, Huang W et al. Small, 2018, 14:1802091 [59] Cui Q R et al, Phys. Rev. B, 2020, 102:094425 [60] Laref S, Goli V M L D P, Smaili I et al. 2020, arXiv:2011.07813 [61] Zhang Y et al. Phys. Rev. B, 2020, 102:241107(R)