轻原子成像法的建立及其新进展*

关若男 李日升

(中国科学院金属研究所,中国科学院固体原子像开放研究实验室,沈阳 110015)

摘 要 介绍了利用高分辨电子显微学进行晶体结构分析的一种方法——轻原子成像法的建立 过程及其在铜、镍、银等金属的初期氧化(硫化)产物结构分析中的应用.介绍了利用轻原子成像法的思 想解决厚膜上观察表面结构的可能性问题的新进展.

关键词 轻原子成像法,高分辨电子显微学,正面成像法

THE DEVELOPMENT AND RECENT AD VANCES OF LIGHT ATOM IMAGING METHODS

Guan Ruonan Li Risheng

(Laboratory of Atom Imaging of Solids, Institute of Metallics, The Chinese Academy of Sciences, Shenyang 110015)

Abstract The light atom imaging method in high resolution transmission electron microscopy (HRTEM) and its application in crystal structure analysis for a series of metastable oxides of copper, nickel and silver is described. The idea stemming from this method has been extended to show the possibility of observing surface structure in a series of rather thick films with the HRTEM plan - view imaging mode.

Key words light atom imaging method, high resolution transmission electron microscopy (HR TEM), plan - view imaging mode

1 用电镜能看到轻原子吗?

利用电子显微镜看原子,一直是电镜工作 者追求的一个目标. 自从 30 年代 Ruska 等发明 电镜后,经过几十年的努力,到 70 年代这一目 标得到初步实现. 1970 年,Crewe 和 Wall^[1]利 用扫描透射电镜,在一种铀的氧化物上首先实 现了对单个重原子铀的直接观察. 此后, Hashimoto^[2]和 Iijima^[3]相继报道用电镜观察到 了重原子钍和钨以及钨原子簇. 在对晶体中的 原子¹⁾和表面原子的观察上,首先也是在一些 重原子金属氧化物的结构像^[4]和重金属 Au 的 28卷 (1999 年) 2 期 表面上^[5]取得突破的.这一点并不奇怪,这是 因为利用电镜所以能看到原子,是基于原子对 电子的散射.重原子对电子的散射强,因而能提 供足够的散射强度使它们较容易地被观察到. 因此,80年代初期,轻、重原子同时存在的化合 物晶体中的轻原子能否与重原子一样被电镜观 察到,没有人提出过这种看来会得到否定结论 的问题.作者当时提出这个问题,起因于一段值

· 107 ·

^{*} 国家自然科学基金资助项目 1998 - 06 - 04 收到初稿,1998 - 07 - 23 修回

严格地说,所观察到的是与入射束方向平行的原子柱的 投影

得追述的往事.

1980年初,关若男受国家教委选派去日本 进修.根据郭可信的建议,来到大阪大学国际知 名电子显微学家、第11届国际电子显微学会主 席桥本初次郎建立的电镜实验室,学习高分辨 电子显微学(HRTEM)模拟计算技术.在作者 基本掌握了该技术后,桥本教授拿来一些高分 辨像让作者辨认,他说,这些是在铜膜上拍得的 照片,他们曾进行过分析,至今没有找到满意的 答案,要求作者把分析这些结果作为第二年进 修的课题.当时,对于作者这个初涉高分辨电子 显微学的人来说,这显然是一个难题,日本朋友 考虑到作者的进修期一年后届满,也劝作者不 要接受这个看来短期无法完成的任务,但当作 者想到桥本教授关于模拟计算只有能解释实验 结果才有用的告诫时,又鼓起了接受挑战、攻克 这一难题的勇气.

2 解决问题的契机 ——振幅 - 厚度图 上被忽视的现象

在运用已有的知识对实验结果反复分析而 得不出答案后,作者想到,要解开这个结,就必 须设计新的实验,并对铜和铜的氧化物晶体中 的电子散射和成像过程,进行深入细致的分析.

图 1 显示了作者当时设想的一种铜的初期 氧化物晶体 Cu₄O,经能量为 100keV 的电子束 沿[001]方向入射后,几组晶面产生的衍射束的 振幅随试样厚度而变化的情况^[6].由图可见, 那些主要携带着铜原子排列信息的晶面{200} 和{120}的衍射振幅随厚度而变化的幅度或周 期,都很相近;而那些主要携带着氧原子信息的 晶面{110}的衍射振幅变化的幅度和周期,与前 者有重大差别.这样,就在振幅 - 厚度图上出现

图 1

(a) 100keV 能量的电子束沿[001]方向入射 Cu₄O 晶体时,它的几个主要晶面{120},{200}和{110}产 生的衍射束的振幅随试样厚度的变化; (b) 在试样厚度为 11.0nm 和 21.6nm 处氧原子所成的 像; (c) 在试样厚度为27.4nm和38.6nm处铜原子与氧原子同时成像; (d) 铜原子和氧原子沿 [001]的投影图

-7

一种引人注目的现象,即当{200}和{120}的衍 射束振幅在试样厚度为 11.0nm 和 21.6nm 处 具有极小值时,本来很弱的{110}的衍射却在此 处相对地具有较大值.因而在这些特征厚度处. 有可能把由弱衍射束所携带的轻原子(此处为 氧原子)排列的信息通过成像显示出来.这一猜 测,得到了像的模拟计算结果的验证,图1下部 是在4个特征厚度处计算得到的模拟像,它们 显示了在厚度为 11.0nm 和 21.6nm 处可以观 察到氧原子排列所成的像(白点),而在厚度为 27.4nm 和 38.6nm 处,可以同时观察到氧原子 (大的白点)和铜原子(小白点)的像的情形:它 们与 Cu₄O 晶体中氧原子(大圆) 和铜原子(黑 点)沿[001]方向的投影图完全一致,表明这些 像点确是氧原子柱和铜原子柱在(001)面上的 投影. 当作者运用这些思想再来审视那些看起来 不可理解的实验结果时,豁然开朗,无论对复杂 的衍射图 还是对几个晶体取向所摄得的高分辨 像.都能一一得到较满意的解释^[6].根据实验和 理论的一致,作者提出了在铜的氧化过程中,存 在初期氧化物的观点,该氧化物中氧的含量比已 知氧化物 Cu₂O 中氧的含量少一半. 它们产生于 氧化反应不充分(例如真空)的环境中,以微晶形 式存在而被 HRTEM 观察到.

应当指出,图1所示的振幅-厚度图,实际 上是众多晶体中类似的振幅 - 厚度图的一例, 是当时人们熟知的晶体中电子散射的动力学厚 度效应,问题在于,当人们分析高分辨电子显微 结构像时,一般只注意几束强衍射的贡献,而忽 略弱衍射的作用.而在强衍射的振幅 - 厚度图 上,引人注目的是振幅随厚度而变化的幅度上 的差别. 根据弱相位体近似的要求. 与结构相对 应的像是在所有衍射都较弱的情况下获得的, 因而对变化幅度的差别也无需进一步考虑.但 是,在铜的初期氧化物中,主要携带氧原子排列 信息的衍射恰是一些弱衍射.当作者刻意思考 这些弱衍射对成像有何贡献而展示它们的振 幅 - 厚度图时,就会注意到,不仅振幅随厚度而 变化的幅度,而且变化的厚度周期,强衍射与弱 衍射之间均有重大差别,进而利用这种被忽视

28卷(1999年)2期

的现象进行分析,找到了解决问题的钥匙.

3 轻原子成像法的确立及一系列金属 氧化亚稳态的发现

在 Cu₄O 的晶体结构被确定后,作者在桥 本教授支持下,将这一结果于1982年4月日本 物理学年会和 8 月第 10 届国际电子显微学会 上发表,引起了国际同行的注意,国际晶体学报 编委、著名晶体学家斋藤喜彦教授在决定于 《Acta Crystallography B》上发表这一成果而写 给作者的一封信中写道:"这篇论文是对结构科 学的所有方面都令人激动的论文之一". 对初涉 高分辨电子显微学结构分析的人,这无疑是一 种可贵的鼓励. 1982 年 10 月回国后,在郭可信 的支持下,作者用类似的分析方法,对铜、镍、银 等金属的初期氧化和硫化产物的结构开展了研 究,接着又发现了比 Cu O 中氧的含量更低的 两种初期氧化物 CusO 和 Cu64O,以及 Cu4O 的 两种同质异构体 S1 和 S2,以及 3 种 Cu4O 的缺 氧异构体 Cu₄O_{0.75} - , , ^[7];在镍中发现了 $Ni_{64}O$ 和 $Ni_{8}O$ 的 3 种同质异构体 , 和 ^[7]; 在银中发现了 Ag₈S^[8]等. 这样,就使利用这种 过去一度被忽视的现象,即衍射束振幅-试样 厚度图上不同晶面衍射束的振幅随厚度而变化 的幅度和周期上的差异,对某些含量少和对电 子散射弱的原子在某些特征厚度处得以成像, 进而用于晶体结构分析,成为某种具有普适性 的方法,后来被简称为轻原子成像法,表1列出

晶体	晶系	点阵参数/ nm			<u>مري</u>
		а	b	с	空间群
Cu ₄ O	正交	0.402	0.566	0.594	P2mm
Cu ₈ O	体心正交	0.547	0.602	0.932	Bmm2
Cu ₆₄ O	体心正交	0.974	1.058	1.620	Bmm2
- Ni ₈ O	体心正交	0.511	0.571	0.926	Bmm2
- Ni ₈ O	体心正交	0.510	0.530	0.818	Ammm
- Ni ₈ O	体心正交	0.495	0.543	0.798	Immm
Ni ₆₄ O	体心正交	0.960	1.032	1.604	Bmm2
Ag ₈ O	正交	0.59	0.64	0.87	Imm2

表 1 用轻原子成像法确定的 Cu, Ni, Ag 中先前未知的 8 种初期氧化(硫化)产物结构的晶体学参数

· 109 ·

了作者用此法确定的 Cu,Ni,Ag 的 8 种先前未 知的初期氧化(硫化)产物结构的晶体学参数.

由于轻原子成像法建立在成熟的晶体中电 子散射的动力学理论和成像理论的基础之上, 它使人们不必受弱相位体近似的约束,可以观 察厚度从几纳米到几十纳米的试样:它可以用 于过去认为不易显示的化合物中轻原子的成 像;它提供了一种简便的晶体结构和成分分析 的方法等等,因而引起了从事晶体材料结构分 析的电子显微学工作者的重视.例如,有人用类 似的方法研究过半导体化合物 InP^[9]和 GaAs^[10],碳化物 VC_{1-x}^[11] 和氧化物 Al₂TiO₅^[12]中轻原子的成像问题. 目前这种方 法已被认为是一种普遍的观念[12]. 最近. 有人 用此法研究了 Fe4N 和 Fe8N 中 N 原子成像的 可能性,取得了初步结果.许多学者认为, Fe₈N 的饱和磁化强度高是因为它具有"磁结 构". Fe₈N 结构中 N 原子位置及其含量被精确 确定,对揭示这种"磁结构"的本质无疑有重要 意义.

但是,关若男等人的方法是基于对二元化 合物中轻、重原子散射振幅 - 厚度图的分析及 实验观察和模拟计算的验证.虽然这种方法为 化合物中轻原子在一定厚度下能够成像提供了 新的思路,但它是否简单地适用于三元以上化 合物中轻原子的成像,需要作进一步分析.1985 年.李方华和汤栋提出的赝弱相位物体近似像 衬理论对此作了分析^[13].他们的分析表明,即 使对于三元以上的化合物晶体,也存在一个厚 于弱相位体的临界厚度.当试样厚度大于弱相 位体时,与二元化合物中的情形类似,轻原子的 衬度最初上升快于重原子,随后轻原子衬度继 续上升,重原子衬度下降,因而在小于临界厚 度、大于弱相位体的一个厚度区间,可以观察到 轻原子. 他们的分析在对 Li₂ Ti₃O₇ 晶体中 Li 原 子的观察上得到了证实^[14].

与轻原子成像法本身迅速得到许多同行的 验证不同,由它所确立的一系列金属初期氧化 产物却引起过一些议论.主要的争议有,当金属 中氧的含量如此低时 (例如在 $Cu_{64}O$ 中氧与铜 的原子的数目之比仅为 0.0156),氧原子在基 体中呈何种状态?而氧化过程中氧原子将获得 电子呈离子状态是人们熟知的情形.由于这些 初期氧化产物的存在超出了人们的化学常识范 围而又一时不能从理论上得到满意的解释,怀 疑它们是否存在者有之.但是,当 80 年代末若 干国外实验室相继报道在铜的超微颗粒中观察 到类似 Cu_4O 的亚氧化物^[15],在高温超导材料 YBa₂Cu₃O₇.中观察到 $Cu_8O^{[16]}$,作者的研究成 果被 1991 年日本出版的《评价尖端材料的电子 显微镜技术》^[17]和 1992 年美国出版的《金属间 相的晶体学数据手册》^[18]收录后,人们必将进 而考虑如何更新观念,来理解新的实验结果.

4 从初期氧化物的多型性看氧原子的 扩散过程

轻原子成像法的建立及由此而导致的一系 列初期氧化物的发现,使人们对金属氧化的微 观过程有了进一步的认识.

70年代,随着超高真空技术的发展和一系 列表面分析技术的产生,人们对氧与金属相互 作用经由物理吸附(低温)、化学吸附、到表面氧 化的过程有了具体的了解.但是,在扫描隧道显 微镜(STM)发明之前的表面分析仪器可能获 得的信息是表面的平均数据,对氧化的微观过 程不能提供直接的信息,而且,表面分析的探测 深度限于表面几层,对由表面反应进入体内反 应的过程,也难以提供直接的数据.而 HRTEM 技术可以观测纳米尺度的微晶,可在原子水平 分辨体结构,因而可能提供氧化微观过程的重 要信息.以铜的初期氧化为例,无论 Cu₄O, Cu₈O 还是 Cu₆₄O,氧原子最终都进入铜晶体的 四面体空洞中形成初期氧化物^[6,7],与人们熟 知的 Cu₂O 中氧原子位于四面体空洞中一致. 这一事实表明,这个位置有利于 Cu 和 O 之间 形成能量上有利的 sp 态,从而降低系统的能量 以生成稳定的化合物. 然而 Cu₄O 的多型性^[7] 表明,在生成 Cu4O 之前,氧原子可能处于铜晶

物理

· 110 ·

体的八面体空洞中.正是氧原子在四面体空洞 和八面体空洞中分布比例的不同,造成了 Cu₄O 结构的多型性以及 Cu₄O 缺氧结构 Cu₄O_{0.75}的 多型性.从应变的观点看,八面体空洞将为氧原 子提供比四面体空洞大一些的空间,有利于减 少系统的应变能.另一方面,进入四面体空洞有 利于氧原子与铜原子形成 sp 型的键.由此可 见,铜的初期氧化过程,经历了氧原子从八面体 空洞过渡到四面体空洞,即从遵循应变能最小 到遵循包括结合能在内的整个系统能量最小的 过程.这一点,与通过中子衍射发现的在稀土金 属中氢原子经由八面体空洞进入四面体空洞的 扩散过程^[19]相似.

5 轻原子成像法对表面结构观察的启 示

轻原子成像法揭示了电子散射动力学效应 导致的强波与弱波的此消彼长现象,显示了利 用此种关系使弱波携带的信息得以成像的可能 性.这一点,对于如何提取极微弱的表面波所携 带的信息很有启发意义.

众所周知,高能电子束穿透晶体时所产生的衍射束中既含有体结构的信息,又含有表面结构的信息.问题在于表面和块体相比,只占极小的份额,即使是用于电镜观察的薄膜,表面衍

28卷(1999年)2期

- 7

· 111 ·

射的强度也小于体衍射强度的万分之一.对如 此弱的衍射波中所含的表面结构信息如何提取 和显示出来,是一个长期以来有待解决的难题. 解决的办法有:(1)制备出超薄膜以提高表面所 占的份额,增强表面衍射的强度.因此,适于表 面结构观察的充分透明的超薄膜的制备一度成 为发展 HRTEM 观察表面技术的主要问题. (2)采用使入射束或试样倾斜的所谓离轴(off zone) 技术,以增强表面衍射的强度.但这样做, 又丢掉了体结构的信息,不利于研究表面结构 与体结构二者之间的联系,近年来,为了解释在 Cu(110) 表面上观察到的新的实验现象,作者 利用轻原子成像法的原理,仔细研究了 200keV 能量的电子束照射到 Cu(110) - (2 ×1) O 晶膜 上所产生的体衍射和表面衍射的振幅 - 厚度图 (图 2).图中{111}和{002}衍射是确定体结构 的两束主要衍射,确定(2 ×1)O表面重构的为 {1/2,1/2,0}衍射和{001}禁阻衍射.由图可见,

图 3 在图 2 所示的一系列特征厚度处 Cu(110) - (2 x1) O 晶膜的高分辨电子显微模拟像与观察像之比较

虽然体衍射的振幅极大值确实比表面衍射的振 幅极大值大几个量级,但在厚度周期为 8.16nm 的一系列特征厚度处,体衍射束的振幅处于极 小,表面衍射的振幅变得可以与它相比.因此, 在这些厚度处,有可能同时观察到表面结构和 体结构.这一论断,得到了实验观察和模拟计算 的证实.

图 3 的上部是模拟计算像,其试样厚度与 图 2 中 A, C, E, G, I, K 所示的厚度对应,即它 们是在入射束强度为极大,而体衍射束强度为极 小的厚度处的计算像.这些计算像不仅给出了体 结构在{110}上的投影,而且显示了Cu(110)-(2 x1)O表面重构所产生的表面条纹.图 3 的 下部是实验观察像,箭头所指示的即为表面条 纹.可以看出,计算像与观察像符合得很好.而 在图 2 中 B, D, F, H, J, L 所示的厚度处, 由 于存在着强大的体衍射的干扰,得不到表面结 构的信息. 这些结论^[20,21]不仅能解释 Cu(110) 表面上观察到的新的实验结果,也在 Ag(110) 的表面重构观察中得到了证实,理论和实验的 一致使我们确信,利用晶体中电子散射的动力 学效应产生的体衍射波与表面衍射波的振幅随 试样厚度而振荡的差别导致的此消彼长,必将 突破只能在几纳米厚的超薄膜上观察表面结构 的限制,在一系列具有特征厚度的相当厚的膜 上,同时观察到表面结构和体结构,而表面结构 电子显微像的厚度周期性地确立,又为解决高 分辨电子显微表面正面成像法发展中的一些问 题,例如顶-底效应等等,提供了新的思路^[22].

致谢 作者感谢桥本初次郎教授、郭可信教 授对此项研究的指导和一贯的支持与鼓励;感 谢当年作为研究生参加过本项研究的关庆丰、 吕军、于瀛大、徐淑华、谌东华、李树有分别在 Ni₈O,Ag₈S以及 Cu(110) - (2 ×1)O表面结构 的观察和模拟计算上做出的贡献.

参考文献

- $[\ 1 \] \quad A. \ V. \ Crewe \ , \ J. \ Wall \ , \ Science \ , \ 168(1970) \ , 1338.$
- [2] H. Hashimoto, A. Kumao, H. Endoh, In: Electron Microscopy, Vol. 3, the Electron Microscopy Society of Canada, Torento, (1978), 244.

物理

- [3] S. Iijima, Optik, 48(1977), 193.
- [4] S. Iijima, J. Appl. Phys., **49**(1971), 5891.
- [5] L.D. Marks, D.J. Smith, Nature, 303(1983),316.
- [6] R. Guan, H. Hashimoto, T. Yoshida, Acta Cryst., B40 (1984), 109.
- [7] R. Guan, H. Hashimoto, K. H. Kuo, Acta Cryst., B40 (1984), 560; B41 (1985), 219; B43 (1987), 343; B46 (1990), 103; Solid State Phenomena, 5 (1989), 73.
- [8] Y. D. Yu, R. Guan, H. Hashimoto et al., Acta Cryst., B51(1995), 149.
- [9] L. Wang, D. Feng, K. Tan et al., J. Mater. Sci., 24 (1989), 1941.
- [10] R. Hillebrand, K. Scheerschmit, Ultramicroscopy, 27 (1989), 375.
- [11] T. Epicier, M. G. Blanchin, P. Ferret et al., *Phil. Mag. A*, **59**(1989), 885.
- [12] T. Epicier, G. Thomas, H. Wohlfromm et al., J. Mater. Res., 6(1991), 133.
- [13] F. H. Li, D. Tang, Acta Cryst., A41(1985), 376.
- [14] D. Tang, C. M. Teng, J. Zou et al., Acta Cryst., B42 (1986), 340.

- [15] J. W. M. Jacobs, F. W. H. Kampers, J. M. G. Rikken et al., J. Electrochem. Soc., 136 (1989), 2914.
- [16] W. Zhou, D. A. Jefferson, W. Y. Liang, Supercond. Sci. Technol., 6(1993),81.
- [17] Y. Ishida, Electron Microscopy Techniques in Evaluation of Advanced Materials (in Japanese), Chouzou Bookshop, (1991), 214.
- P. Villars, L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (2nd Edition), Vol. 3, ASM International, The Materials Information Society, 3(1992), 2940.
- [19] C. E. Holley, R. N. R. Mulford, F. H. Ellinger et al., J. Phys. Chem., 51(1955), 1226.
- [20] R. Guan, R. S. Li, S. H. Xu et al., Surf. Sci., 326 (1995), L467.
- [21] R. Guan, R. S. Li, S. H. Xu et al., Phys. Rev. B, 529 (1995), 4748.
- [22] 李日升、关若男,电子显微学报,17(1998),295.

托卡马克超声分子束加料

兆 良 骅

(核工业西南物理研究院,成都 610041)

摘 要 中国环流器新一号(托卡马克)装置采用新的等离子体加料方法——超声分子束注入. 由于粒子注入深化,形成电子密度的峰化和密度极限提高.欧姆加热等离子体的能量约束时间的线性范 围增长到 $\overline{n_e} = 4 \times 10^{19} \text{ m}^{-3}$.实验结果表明,超声分子束注入是一种高效和有利改善约束的气体加料方法.

关键词 托卡马克,超声分子束,电子密度峰化,能量约束改善

SUPERSONIC MOLECULAR BEAM FUELING IN THE TOKAMAK

Yao Lianghua

(Southwestern Institute of Physics, Chengdu 610041)

Abstract A new fueling method ——supersonic molecular beam injection(MBI) has been successfully performed in the HL - 1M tokamak during the period of the plasma current ramp up. Due to the deep penetration of the fueling particles, the electron density exhibits a peak and the value of the density limit increases. Confinement improvement is observed, with the upper end of the linear ohmic

* 国家自然科学基金、核工业科学基金资助项目
1998 - 06 - 10 收到初稿,1998 - 07 - 23 修回

28卷(1999年)2期

7