样头等.

(3)有线电视和移动通信.有线电视可用同 轴电缆和光纤传输,后者的容量和无中继传输 距离比前者大得多,因而成本较低.为了用光波 传输微波信号,采用 LD 直接调制技术或副载 波调制技术以及图像信号副载波波分复用技术.移动通信遇到建筑物遮挡或在隧道内、地下街道中会产生极大衰减.此时就可以在这些遮挡处用光纤通信代替微波,也就是形成微波与光纤混合的传输通道.

采用最早到达光透过高散射介质成像*

侯比学 陈国夫

(中国科学院西安光学精密机械研究所,瞬态光学技术国家重点实验室,西安 710068)

摘 要 综述了最早到达光方法透过散射介质成像技术,详细地介绍了克尔快门时间空间选通 成像技术、共焦扫描条纹相机成像技术、非线性二次谐波产生 - 互相关选通成像技术及电子学全息选通 成像技术,对这几种选通成像技术目前的发展状况、优缺点给出了评述.

关键词 最早到达光,散射介质,选通,成像

IMAGING THROUGH HIGHLY SCATTERING MEDIA USING FIRST⁻ ARRIVING⁻ LIGHT

Hou Bixue Chen Guofu

(State Key Laboratory of Transient Optics Technology, Xi an Institute of Optics and Precision Mechanics, The Chinese Academy of Sciences, Xi an 710068)

Abstract The technique of imaging through highly scattering media using first - arriving - light is summarized. Four kinds of time - resolved imaging techniques are described in detail, including the Keer - gate, confocal scanning streak camera, second - harmonic - generation cross - correlation, and electronic holography. Their current development and their advantages and disadvantages, are discussed.

Key words first - arriving - light, scattering media, gating, imaging

1 引言

透过高散射介质(特别是生物组织)成像一 直是人们最感兴趣、最具有挑战性的研究方向 之一.其原因之一是这个课题的发展在医学诊 断等领域有着潜在的应用前景,因而在国际上 是非常热门的一个课题,但是它在国内才刚刚 起步.在各种透过高散射介质成像技术中,最早 到达光方法是最有发展前途的方法之一,这种 方法是基于最早到达光概念.一个窄的光脉冲 28卷(1999年)3期 通过高散射介质后,由于严重的散射,从介质的 另一面出射的光是依次射出的,散射不严重的 光较早地出现于介质的另一侧,而严重散射的 光较迟地出现,这样通过散射介质以后的光脉 冲将被展宽.展宽后的脉冲可分为三部分^[1,2]: 弹道光(ballistic light)、蛇行光(snake light)和 散射光(diffusive light).弹道光沿入射光方向 直线透过散射介质,蛇行光在介质内散射次数 不多,在前进方向上很小的一个锥角内传播,这

* 1998 - 07 - 17 收到初稿,1998 - 11 - 02 修回

两种光构成最早到达光,较早地出现在出射脉 冲的前沿,可以形成较好的像.散射光(即后续 到达光)在介质内严重散射,走过曲折的路径, 较迟地出现在出射脉冲的后续部分,这部分光 将影响成像质量,严重时将完全淹没成像目标 的像.

对于成像而言,只有处在出射脉冲前沿的 最早到达光才带有有用信息,而影响成像质量 的后续到达光处在出射脉冲的后续部分,这两 部分光在时间上是分开的,这样,就可以采用时 间选通方法把最早到达光从出射脉冲中分离出 来成像,从而摆脱了后续到达光的影响.常用的 选通成像方法有:克尔快门时间空间选通成像 技术、共焦扫描条纹相机成像技术、非线性二次 谐波产生-互相关选通技术及电子学全息选通 成像技术.下面分别介绍这几种方法.

2 克尔快门时间空间选通成像技术

克尔快门时间空间选通成像技术是把空间 频谱滤波和超快时间选通结合起来的一种成像 技术.一个超短激光脉冲进入散射介质后,最早 到达光部分几乎沿着入射光方向直线透过散射 介质,其波前可近似看作是平面波前或准平面 波前,空间频率成分主要是零频光和低频光;较 迟出现的后续到达光经过多次散射,可近似看 作是从散射介质每一点出射的光,它具有球面 波前,其空间频率成分主要是高频光.因此,这 两部分光在空间频谱平面上表现出不同的分 布.最早到达光出现在光轴中心区域;后续到达 光出现在整个谱平面上,形成一个近似均匀的 亮背景.这样,不仅在时间上而且在空间上也可 以选通最早到达光成像,将会得到信噪比较高 的图像.

基于上述原理,L. Wang 等人^[3,4]采用克尔 快门技术,实现了时空选通透过散射介质成像. 光路安排如图 1 所示^[3]. 成像系统是一个由透 镜 L₁和L₂组成的4F光学系统,散射介质和成 像目标放置在L₁的前焦面上.克尔快门是由盛 有 CS₂的克尔盒和一对正交的起偏器和检偏器 构成,克尔盒放置在L1的后焦面即空间频谱平 面上.实验中采用钕玻璃锁模激光器作为光源, 脉冲宽度是 8ps,波长为 1054nm. 用基波光作 为成像系统的照明光,通过调节延迟线可以改 变成像光脉冲透过克尔快门的时间,与克尔快 门的匹配使用可实现时间上的选通.通过倍频 晶体 KDP 的二次谐波 527nm 的光作为打开克 尔快门的诱导光,它会在克尔盒上诱导产生一 个空间小孔,选通出成像目标频谱面上的低频 成分,也就是可以用来成像的最早到达光,实现 空间上的选通. CCD 放置在 L_2 的后焦面上. 由 L₂将克尔快门选通出的频谱再作一次反傅里 叶变换,成像干 CCD 上,再将图像数据输入微 机,即可以进行图像处理,实验中分别透过厚度 为 55mm、浓度为 0.25 % 的聚苯乙烯和 1 % 的 内脂的散射液体,用鉴别率板作为成像目标,对 0.25mm.0.5mm.1mm的分辨率都得到了理想 的结果。

图 1 克尔快门选通成像技术光路安排 (CCD 为致冷的或像增强的电荷耦合器件; P 为起偏器; A 为检偏器; L₁, L₂ 是焦距为 60cm 的傅里叶变换透镜; KDP 为倍频晶体: BS 为分束镜)

克尔快门时间空间选通成像技术可以实现 二维成像,分辨率也较好,但是需要较大功率的 激光系统.

3 共焦扫描条纹相机成像技术

早期的共焦扫描技术是直接用能量计来测 量从散射介质透射出的光的强弱,通过逐点扫 描即可得出目标的像^[5],后来有人用 CCD 来探 物理

测出射光,而且只选择在入射光直线上的像素的灰度值作为测量值^[6,7],也有人采用在这个像素周围取一个合适的窗口,在窗口内对灰度 值进行平均,把平均的灰度值作为测量值,通过 逐点扫描得出目标的像.这实际上是作了一次 低通空间滤波,只选通出低频光成像,而把高频 散射光滤掉.

90 年代初, K. M. Yoo^[8]以及 J. C. Hebden^[5,9]所在的两个研究小组采用条纹相机超 快选通技术,与共焦扫描技术结合起来,设计出 了共焦扫描条纹相机选通成像技术,该方法采 用条纹相机来探测从散射介质出射的激光脉 冲,再通过数学处理,得出最早到达光的积分强 度,实现时间上的选通,通过逐点扫描得出目标 的像,光路安排如图2所示,从超短脉冲激光器 发出的飞秒脉冲激光,主要部分作为探测光通 过长焦距透镜 L₁聚焦 (会聚为直径小于 0.3mm 的光斑) 在散射介质上, 一部分入射到 条纹相机同步扫描单元的光电二极管上,使条 纹相机的扫描频率与飞秒脉冲激光器的重复频 率相同,另一部分作为条纹相机探测光的参考 光,它可以为散射介质的出射脉冲在时间上提 供一个绝对标准,以作比较,中性滤波片用来衰 减参考光的强度,以使它的强度可与探测光比 较.待测样品置于电动平台上,使样品的入射表 面垂直干光束,样品的出射表面通过透镜L2 聚 焦于条纹相机上,电动平台可带动样品垂直于 光束移动. 直径 1mm 相距 0.5m 的两个小孔置 于样品和条纹相机之间,以使条纹相机只能探 测到沿入射光方向诱射的光.

28卷(1999年)3期

7

使整个系统步进扫描,在电机带动样品移动的同时,用条纹相机采集数据,将会得到一系列的探测信号的强度-时间曲线.在文献[8]中,样品是在26mm厚的瘦鸡肉中夹着2mm厚的肥鸡肉,肥鸡肉宽度是5mm,典型的曲线如图3(a)(背景已被减掉)所示.由此可以看出,由于肥肉散射较强,较早到达光部分的强度比瘦肉的小.

(a) 散射介质出射光脉冲的强度 - 时间曲线;

(b) 时间分辨的目标的像

将这些曲线的参考光脉冲在时间轴上移到 同一点,然后把曲线的强度对时间积分,积分时 间的起点为探测信号的起始点.随着积分上限 的不同,将得到相应的时间区间内的信号的积 分强度.如果积分的时间段对应于最早到达光 的时间段,那么积分强度对应着最早到达光的 积分强度,把所有曲线的对应于最早到达光的 时间段的积分强度逐点连接起来,就可得到样 品的扫描像.对于上述的样品,当积分区间是

· 175 ·

120 — 130ps 时,得到的积分强度随位置变化的 曲线如图 3(b) 所示.由此可以看出肥肉在瘦肉 中的位置,实现时间选通成像.

这种成像技术只有通过扫描才能获得目标 的图像(二维成像更麻烦),对扫描得到的出射 光脉冲的强度 - 时间曲线,必须进行积分处理, 成像过程复杂.此外,它的时间分辨率受到条纹 相机分辨率的限制,只能达到几个皮秒量级,空 间分辨率受到扫描过程的限制,一般也较低.但 是,这种技术的探测深度较大.

4 非线性二次谐波产生 - 互相关选通 成像技术

非线性二次谐波产生 - 互相关选通成像技 术实际上也是一种共焦扫描技术,只是在选通 方法上有所不同.这种成像技术的理论依据是, 从散射介质出射的光子中,只有弹道光子和蛇 行光子与参考光脉冲具有很好的相关性,利用 互相关技术可选通出这部分对成像有用的光 子.美国的 K. M. Yoo^[10]及国内天津大学王清 月^[11]领导的研究小组在这方面进行了研究,实 验光路如图4所示.激光器发出的飞秒激光脉

冲由分束器分为两束,从BS反射的光脉冲作 为参考光,经过光学延迟线,再经过透镜L3聚 焦在倍频晶体BBO上,与从散射介质中出射的 光脉冲重合,产生倍频信号.从BS透射的光脉 冲经L1聚焦在盛有散射介质的样品盒中,将样 品置于光束的焦点位置,以提高空间分辨率.样 品盒置于由步进电机带动的平台上,平台移动 的方向垂直于光脉冲的入射方向. 从盒中出射 的光脉冲由透射系统 L₂和 L₃收集、聚焦后入 射到 BBO 晶体上并与参考光脉冲相关. 仔细调 节参考光路延迟,使参考光与散射介质中出射 光脉冲的前沿即弹道光子和蛇行光子在 BBO 晶体中相关而产生倍频信号. 样品的图像信息 通过倍频信号的变化被记录下来. 当电机带动 平台上的样品扫描时,由记录仪记录倍频信号 的变化,从而得到样品的一维图像. 在文献[11] 中,分别透过厚度为 24mm、浓度为 1.5%— 4.5%的奶液、2mm 的苹果片、1mm 的猪肉组 织切片成像,得到了较好的结果,分辨率大约为 2mm.

这种选通技术与共焦扫描条纹相机成像技术相比,成像过程比较简单,但也只有通过扫描 才能得到目标的像,分辨率受到扫描过程的限制,一般较低.

5 电子学全息选通成像技术

电子学全息选通成像技术是通过全息干涉 过程实现的,美国的 E. Leith 领导的研究小组 在这方面作了大量的深入的研究工作^[12-45]. 其原理如图 5 所示. 由钛宝石锁模激光器发出 的飞秒激光脉冲进入全息光学系统,由半反射 镜BS分为物光束和参考光束,物光束通过成 像目标、散射介质和一个空间滤波器系统,由一 个半反射镜使物光和参考光会合,再通过一个 成像系统将散射介质的出射表面成像于 CCD 靶面上,调节参考光路中的延迟线,使参考光脉 冲与最早到达光同时到达 CCD 靶面,干涉形成 像面全息图^[2],而后续到达光在空间上没有与 参考光相遇,不能形成干涉条纹,只形成模糊的 亮背景.由于 CCD 分辨率很低,为了使物光和 参考光形成较低空间频率的干涉条纹,以适应 CCD 的要求,在光路中有一空间滤波系统,滤 去高频散射光,而且使物光与参考光夹角很小. 另外,参考光路中有一个透过率连续可调的中 性衰减片,可调节参考光强,以形成对比度较好 的干涉条纹.

· 176 ·

图 5 电子学全息选通成像技术原理图 (BS 为分束器;BC 为合束器;IS 为成像系统;BWL 为低通空间滤波器;F 为中性滤光片)

CCD 把全息图数据输入微机,通过微机把 全息图以类似于光学再现的方式进行数字化处 理.首先将全息图数据进行傅里叶变换,得到其 频谱,再作滤波处理,只保留一级衍射项,并在 频域中进行坐标平移,再进行反傅里叶变换,即 得到再现像.

散射光在 CCD 靶面上形成的亮背景在全 息图中以直流成分出现。通过滤波处理将其滤 掉,而只有最早到达光与参考光干涉形成的全 息图的一级衍射项可产生目标的像.这样,通过 全息技术将最早到达光从散射光中分离出来, 实现了选通成像.

但是,在记录的全息图中,非常微弱的最早 到达光信号叠加在很强的后续到达光亮背景 中,再现像信噪比很低.为了进一步提高信噪比, 可以将多幅全息图再现像叠加处理,前提条件是 多幅再现像的散斑背景噪声之间互不相关.

H. Chen 和 E. Leith^[13,14]等人用这种技术 分别透过 6mm 厚的鸡肉和 6mm 厚的人手肌肉 组织,对 0.55—2mm 的金属丝成像,得到了较 好的结果,为光学层析在医学上应用做了初步 准备.我们在这方面也做了些工作,得到了一些 初步的结果^{11,[16]}.在文献[17]中,以自锁模钛 宝石激光器为光源(脉冲宽度为 20fs),透过厚 度为 12mm、体积百分比为 5 %的鲜奶和水的混 合散射液体,对直径为 0.65mm 的金属丝成像, 得到的图像如图 6 所示.

图 6 飞秒脉冲激光电子学全息选通得到的金属丝的图像

飞秒脉冲激光电子学全息选通成像技术在 透过高散射介质(如生物组织)成像方面有着很 好的发展前景.它有着很强的优势:如二维成 像,所需光源功率低,光路易于调节,能连续地、 较快地产生多幅全息图,以便进行多幅再现像 叠加平均,提高信噪比,图像处理也非常方便. 时间选通宽度就是入射脉冲的宽度,可达几十 到几百飞秒量级,空间分辨率也可达到亚毫米 级.但是,CCD的分辨率很低,使得物光和参考 光之间的夹角很小,全息图的干涉条纹只有15 条/mm左右,这将限制成像质量和系统分辨率 的提高,即使 CCD 像素数增加,也将受到计算 机存贮能力和运算能力的限制,而且探测深度 较小,有待于进一步提高.

(下转第167页)

```
28卷(1999年)3期
```

• 177 •

約阅侯比学、成铎、陈国夫的"透过高散射介质成像的超短 脉冲激光电子学全息系统"一文,该文将在1999年第6期 《中国激光》上发表

板(如直径大小、接地状况)对放电模式影响非 常大,他认为这是不可理解的.在研究密度与磁 场关系的实验时,他还发现在很低的磁场处 $(B_0 \sim 2 \times 10^{-3} T)$ 有一个密度峰,他确认这是电 子回旋峰,因而提出一个新的设想,即射频波 ECR 离子源,如果这种设想可行的话,那么建 造一台 rf ECR 将比微波 ECR 离子源经济多 了.

在不断涌现的问题当中,最富有挑战性意 义的就是为什么螺旋波放电具有极高的电离效 率以及右旋螺旋波远较左旋螺旋波占主导地 位.在一系列低气压、高密度等离子体源中,螺 旋波激发等离子体源是人们所赋期望值最高 的,它已成为世界研究热点,我们希望通过本文 的介绍能引起有关研究者们的关注.

参考文献

- [1] J. P. Klosenberg, B. McNamara, P. C. Htonemann, J. Fluid. Mech., 21(1965) ,545.
- [2] R. W. Boswell, Phys. Lett. A, 33(1970),457.

- [3] R. W. Boswell et al., Phys. Lett. A, 91 (1982) ,163.
- [4] F. F. Chen, Australian National University Report ANU
 PRL IR85/12, (1985).
- [5] A. Komori, T. Shoji et al., Phys. Fluids B, 3(1991), 893.
- [6] A. R. Ellingboe, R. W. Boswell, Phys. Plasma, 3 (1996) ,2797.
- [7] Michael A. Lieberman, Allen J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiely & Sons, Inc., New York (1994), 440.
- [8] F. F. Chen, J. Vac. Sci. Technol. A, 10(1992),1389.
- [9] K. Yamaya, Y. Yamaki et al., Appl. Phys. Lett., 72 (1998) ,235.
- [10] T. Minami, H. Sato, et al., Jpn. J. Appl. Phys., part2, 31(1992), L257.
- [11] R. W. Boswell, D. Henry, Appl. Phys. Lett., 47 (1985) ,1095.
- [12] P. Zhu, R. W. Boswell, Phys. Fluids B, 3(1991),869.
- [13] A. Ellingboe, R. W. Boswell, Bull. Am. Phys. Soc., 39 (1994) ,1460.
- [14] Keiji Nakamura et al., Jpn. J. Appl. Phys., 34(1995), 2152.

(上接第 177 页)

另外,还有其他的一些选通成像技术,例如 吸收选通法^[17]、空间滤波法、受激 Raman 散射 增益法^[18]和其他的一些可产生互相关项的非 线性光学现象^[19]都可以实现选通.

参考文献

- $[\ 1\] \quad K.\ M.\ Yoo\ ,\ R.\ R.\ Alfano\ ,\ Opt.\ Lett.\ ,\ {\bf 15}(1990)\ ,320.$
- [2] 侯比学、陈国夫,光子学报,27(1998),317.
- [3] L. Wang, P. P. Ho, X. Liang et al., Opt. Lett., 18 (1993) ,241.
- [4] L. Wang, P. P. Ho, R. R. Alfano, Appl. Opt., 32 (1993),5043.
- [5] J. C. Hebden, R. A. Kruger, K. S. Wong, Appl. Opt., 30(1991),788.
- [6] D. S. Dilworth, E. N. Leith, J. L. lopez, Appl. Opt., 29 (1990),691.
- [7] 侯比学、成 铎、陈国夫,光子学报,27(1998),212.
- [8] B.B. Das, K. M. Yoo, R. R. Alfano, Opt. Lett., 18 (1993),1092.

- [9] J.C. Hebden, Appl. Opt., 32(1993),3837.
- [10] K. M. Yoo, Qirong Xing, R. R. Alfano, Opt. Lett., 16 (1991) ,1019.
- [11] 张伟力、邢岐荣、陈 野等,光学学报,17(1997),1624.
- [12] E. Leith, E. Arons, H. Chen, et al. Optics & Photonics News, Oct. (1993) ,19.
- [13] E. Leith, H. Chen, Y. Chen et al., Appl. Opt., 30 (1991),4204.
- [14] H. Chen, M. Shih, E. Arons, Appl. Opt., 33 (1994), 3630.
- [15] H. Chen, Y. Chen, D. Dilworth et al., Opt. Lett., 16 (1991),487.
- [16] 侯比学、陈国夫、丰 善等,光学学报,18(1999).
- [17] K. M. Yoo, Feng Liu, R. R. Alfano, Opt. Lett., 16 (1991),1068.
- [18] M. D. Duncan, R. Mahon, L. L. Tankersley et al., Opt. Lett., 16(1991),1868.
- [19] M. Bashkansky, J. Reintjes, Appl. Opt., 32 (1993), 3842.

28卷(1999年)3期

· 167 ·