实验技术

探针法测量磁电阻效应*

龚小燕 阚 敏 杨 毅

(上海大学理学院 上海 201800) (中国科学院上海冶金研究所 上海 200050)

摘 要 阐述了各向异性磁电阻效应测量原理,提出采用对称电流六探针来改善测量误差,以及八探 针法测量多层膜巨磁阻效应.

关键词 探针,磁薄膜,磁电阻效应

MEASUREMENT OF MAGNETORESISTIVITY USING POINT PROBES

Gong Xiaoyan Kan Min

(College of Science, Shanghai University, Shanghai 201800)

Yang Yi

(Shanghai Institute of Metallurgy, The Chinese Academy of Sciences, Shanghai 200050)

Abstract The principle of the measurement of anisotropic magnetoresistivity is described. It is shown that the six-point probe can improve the measurement accuracy and the eight-point probe can measure the giant magnetoresistivity of multilayer films.

Key words probe, magnetic films, magnetoresistivity effect

1 概述

薄膜材料的研究是当今物理学前沿学科之一,磁性薄膜在磁存储方面的应用已众所周知, 利用磁性薄膜的磁电阻效应可以制成高灵敏度 磁传感器,磁电阻效应的研究对磁学基础研究 也有重要意义.

磁性薄膜在平行于膜面的外磁场作用下, 达到饱和磁化时,薄膜的电阻率将随外磁场方 向和电流方向发生变化而变化,这个现象被称 为各向异性磁电阻效应(anisotropic magnetoresistance effect,简称 AMR).如果磁场方向与电 流方向夹角为,则电阻率的表达式为

 $() = _{0} + \cos^{2} \qquad (1)$

测量薄膜的各向异性磁电阻效应,关键就 是必须确定电流和磁场之间的夹角,通常采用 以下 3 种方法:

(1) 光刻法,即将薄膜光刻成窄带.可以认 为窄带中只有平行、均匀的电流,改变磁场方向 由 =0 至 =90°,测出 .此方法的缺点是: 首先,要对膜进行光刻处理,而光刻工艺后有可 能改变薄膜的性质,并引入形状各向异性;其 次,只能通过改变磁场方向来获取 或 ,而 在研究非饱和状态的磁电阻效应时,往往只能 用改变电流的方法.

(2) 平行电极法. 在薄膜上做两条平行电

* 上海市教委资助项目 1998 - 09 - 07 收到初稿、1998 - 10 - 19 修回

28卷(1999年)5期

极,只要极间距离足够小,在二极间就会形成平 行、均匀的电流.改变外磁场方向,测出 .此 方法除了对测量样品不引入形状各向异性外, 上述其余缺点同样存在.

(3) 探针法. 用四探针测量电阻率, 可以避 免电极接触电阻对测量结果的影响, 因此在国 内外早已被广泛用来测量半导体、铁氧体材料 的电阻率. 但是在四探针测量方法中, 共线四探 针不能测量薄膜各向异性磁电阻效应. Nortor⁽¹⁾最早提出非共线四探针测量原理及特定 条件下的探针因子. 本文提出六探针测量法, 改 善了磁性薄膜电流的均匀分布, 讨论了四探针 和六探针的测量误差, 并提出用八探针可以测 量非饱和磁化状态下的各向异性磁电阻效应及 巨磁阻效应.

2 测量原理和误差

六探针的位置分布如图 1,位置 , 为电 流输入探针, , 为电流输出探针, *Q*, *P* 为电 压探针,则薄膜磁电阻率相对变化的表达式 为^[2]

$$\left|\frac{\phi_{(q \cdot p)} - \phi_{(q \cdot p)}}{1/2[\phi_{(q \cdot p)} + \phi_{(q \cdot p)}]}\right| = M_{\rm r} \left|\frac{1}{0}\right|,$$
(2)

式中 $\phi_{(q,p)}$, $\phi_{(q,p)}$ 分别为磁场平行于电流 和垂直于电流方向的探针 Q, P 点的电势, M_r 称为探针因子, 是与电压探针位置相关的参数.

I
$$(-x_0, y_0)$$

Q $(-x_q, 0)$
N $(-x_0, -y_0)$
图 1 六探针坐标位置的分布

当电压探针 Q, P 位置的坐标发生偏差 时,将引起探针因子的误差,从而引起 的测 量误差.

$$M_{r} = M_{r1} x_{1} + M_{r2} x_{2} + M_{r3} y_{1} + M_{r4} y_{2}, \qquad (3)$$

式中

$$x_{1} = \frac{1}{2} (x_{q} - x_{p})$$

$$x_{2} = \frac{1}{2} (x_{q} + x_{p})$$

$$y_{1} = \frac{1}{2} (y_{q} - y_{p})$$

$$y_{2}hi = \frac{1}{2} (y_{l} + \mu + \mu)$$

iki.net

图 2 探针测量法的电势分布 (a) 四探针:(b) 六探针

$$\frac{V}{V_0} = \frac{V - V}{V_0} = M_r \frac{x - y}{0}$$
(8)

当电压探针位置坐标 $x_q = x_p, y_a = y_b$ 均 为 0.677 时, $M_r = 1.038$. 因此可分别测出在非 饱和磁化状态下,平行于磁场方向和垂直于磁 场方向电阻率 的变化,得到各向异性磁电阻 效应及巨磁阻效应随磁化场的变化.

4 几种测量方法的结果

. 7

对同一基片的薄膜,采用六探针法、四探针 28卷(1999年)5期 法、光刻法多次测量磁性薄膜磁电阻率的结果 如图 4 所示.可以看到,采用六探针法虽然没有 用光刻法精确,但是测量方法简单,而且测量精 度比四探针法测量精度有明显提高.

八探针法主要用于测量薄膜在非饱和磁化 状态下的各向异性磁电阻效应及振幅磁电阻效 应,其测量精度与六探针法相当.

参考文献

- [1] Norton R H. IEEE Trans. Magn., 1983, MAG19: 1579-1580
- [2] 陈建峰,龚小燕,阚敏.上海大学学报(自然科学版), 1995(1):434-437
- [3] 张恒,龚小燕,张义邴等.物理测试,1997(3):21-24

· 301 ·