磁电子学讲座

第九讲 金属磁性多层膜的结构及其对巨磁电阻效应的影响

麦振洪 徐 明

(中国科学院物理研究所 北京 100080)

摘 要 介绍了金属磁性多层膜的微结构和磁结构的研究进展,简要综述了磁性多层膜的结构与巨磁电阻(GMR)之间的关系.

关键词 金属磁性多层膜,微结构,磁结构,巨磁电阻

THE STRUCTURE OF METALL IC MAGNETIC MULTILAYERS AND ITS EFFECT ON GLANT MAGNETORESISTANCE

Mai Zhenhong Xu Ming

(Institute of Physics, The Chinese Academy of Sciences, Beijing 100080)

Abstract We describe the microstructure and magnetic structure of metallic magnetic multilayers, and summarize the relationship between the structure and giant magnetoresistance.

Key words metallic magnetic multilayers, microstructure, magnetic structure, giant magnetoresistance

1 引言

2

自 1998 年 Baibich 等人发现 Fe/ Cr 多层膜 的巨磁电阻(GMR)效应以来,GMR 效应的研 究已成为凝聚态物理和材料科学领域中的一个 研究热点.材料的性能决定于材料的结构,揭示 材料的结构,对深化磁性多层膜的基础研究和 应用研究有重要的推动作用.本文将介绍近几 年来用透射电子显微镜(TEM)、X 射线技术和 极化中子反射表征金属磁性多层膜结构的研究 结果,并对多层膜结构与 GMR 之间的关系作 一简要综述.

2 金属磁性多层膜微结构的 TEM 观察

高分辨电镜可以直接观察薄膜中的晶格排 · 302 · 列状况,其分辨率能够达到原子尺度.目前,高 分辨晶格图像已被广泛地用来揭示应变超晶格 的生长形貌和微结构.

2.1 金属磁性多层膜界面的 TEM 观察

TEM 观察表明^[1],在一些金属磁性多层膜 的界面处有混合层存在,而且 A/B 和 B/A 界 面通常是不对称的(图 1).混合层是在沉积过 程中由两种不同原子相互扩散形成的.由于两 种原子所获得的动量大小不同,在两界面处原 子的互混程度不一样,这就导致了界面的非对 称性.界面互扩散是一个很普遍的现象,在金属 磁性多层膜中,这种扩散通常仅发生在离界面 最近的几个原子层内.

^{*} 国家自然科学基金资助项目 1998 - 08 - 27 收到初稿,1998 - 10 - 13 修回

通过 TEM 观察生长条件对多层膜界面结 构、界面粗糙度的影响也取得了许多重要结果. 例如,经过退火的 Fe/ Pt 多层膜其界面处存在 合金相.在 NiFe/Ag 多层膜中,Snoeck 等人^[2] 观察到了 Ag 向 NiFe 合金层的扩散,退火使扩 散加剧,并导致界面粗糙度增加.对于某些系统,适当的退火却能使界面粗糙度降低.例如, Fe/ Cr 多层膜经过适当退火后界面会变得更加 平整. TEM 还观察到,随着膜厚的增加,远离衬 底的界面通常具有更高的粗糙度.

2.2 多层膜晶向结构和结构相变的 TEM 观察

金属磁性多层膜的柱状生长似乎带有普遍 性,在 Co/Cr,Co/Cu,Co/Au,Co/Pd,Fe/Mo, Ni/Cr 和 Ni/Au 等多层膜中均已观察到,但对 于不同的生长条件,柱晶的形状、大小会有所不 同.一般地,柱晶尺寸随衬底温度升高而增大; 真空度越高,多层膜中柱晶尺寸越大.在 Ni/Au 多层膜中,TEM 还观察到了孪晶的存在.

不同生长条件下沉积的多层膜,其织构和 晶化程度往往存在很大差异. Bailey 等^[3]用 TEM 比较了离子束沉积(IBD)和直流磁控溅 射沉积(DC - MSD)生长的 NiFe/Co/Cu/Co/ NiFe 自旋阀结构,结果发现,IBD 生长的薄膜 28卷(1999年)5期 具有近乎完美的(111)织构,沿 c 轴方向有 hcp 结构的 Co 柱晶存在: 而 DC - MSD 生长的薄膜 有大约10%发散的织构,膜中还有一些随机取 向的晶粒存在.有无缓冲层以及缓冲层选择什 么材料,对多层膜的微结构有重要影响.例如, 在 NiFe/ Cu/ NiFe/ FeMn 三明治结构中,无缓 冲层或以 Cu, Ag, Au, Cr 等作缓冲层, 薄膜没有 明显的织构;而以Nb,Ta,Ti,Zr或Hf 作缓冲 层,薄膜表现出明显的(111)织构.有趣的是, Hf 缓冲层本身为无定形结构,但沉积在它上面 的 FeMn、NiFe 和 Cu 却表现出极好的择优取 向^[4].一般认为,缓冲层对多层膜的微结构的 影响主要是能够消除多层膜与衬底之间的应 力,并能降低衬底的表面粗糙度.靠近缓冲层界 面处的膜层显得平整且均匀,而远离缓冲层的 地方,膜层显得比较粗糙.

实验上还发现,多层膜晶向结构与子层厚 度有密切关系.在 Au/ Ni 多层膜中,短周期的 多层膜中有榴状结构柱晶存在,并表现为明显 的单相结构;当周期厚度超过一定值以后,膜中 将分离出 fcc 的 Au 相和 Ni 相.而且随着周期 厚度增加,膜中还有择优取向的孪晶出现. Koike 等人^[5]研究了 Fe/ Cu (001)薄膜微结构 与 Fe 层厚度的关系,他们发现当 Fe 层厚度增 大到 2.3nm 时,Fe 层中开始有 bcc 结构出现, 并伴 有晶格旋转和失配应变;Fe 层超过 5.0nm,则 Fe 层完全转变为 bcc 多晶结构.

2.3 薄膜的生长形貌

一般认为,金属磁性多层膜的生长跟半导体多层膜差不多,也是逐层长上去的,只是界面处有较大程度的互混而已.但 de la Figuera 等^[6]在研究 Co/Cu(111)薄膜的生长形貌时发现,最初沉积在 Cu 上面的 Co 为三角形状的双层小岛,而且这些小岛具有不同的取向.他们认为薄膜中的孪晶很可能与这些小岛有关.

3 金属磁性多层膜微结构的 X 射线表 征

X射线检测能够提供材料的原子尺度的结

· 303 ·

构信息,而且对样品无损伤,薄膜的完美 X 射 线表征,可以揭示比较全面的结构信息,简单归 纳为:(1)低角度 X 射线反射(LAXRR)反映了 与膜面垂直的电子密度分布,从反射率曲线能 够分析出薄膜厚度、调制波长、表面和界面粗糙 度:(2)散射矢量垂直于膜面的低角散射 (LAXS)能够揭示生长方向上的面间距失配情 况、其他方向的散射还能获得薄膜晶化程度和 晶向排列的信息; (3) 高角度 X 射线衍射 (HAXRD)反映了多层膜的结构相关性、垂直于 膜面的平均晶格常数以及多层膜子层的应变调 制情况:(4)比较倒易空间中薄膜和衬底的布拉 格峰,可以确定薄膜与衬底的取向差和晶格失 配;(5)X射线吸收谱(XAS)可以检测每个样品 的局域结构,如原子间距、近邻配位数等,调节 X射线能量,还能分析所进定原子在吸收边或 吸收边以上的精细结构。

3.1 界面微结构的 X射线研究结果

成分调制的多层膜,如果晶格高度匹配,则 表现为单相结构和陡峭的界面;若原子尺寸和 结构匹配性差,则界面处会引入许多缺陷,出现 无序结构或界面混合层.LAXS 研究^[1,7]发现, 在 Co/Cr、Co/Re 等多层膜的界面处有混合层 存在,而且 A/B 和 B/A 界面厚度不一样,这 与 TEM 的观察结果是一致的;拟合实验曲线, 还得到了界面区的平均厚度.金属磁性多层膜 中能否出现混合层,与薄膜的化学成分、生长条 件密切相关,在磁控溅射的 Fe/Cr 多层膜中,只 有当生长气压低于 20mTorr (1 Torr = 133.332Pa)时,界面处才有混合层出现^[8].对 于 Ni_xFe_{100-x}/ Mo 多层膜,当 Ni 含量 x 39 时,界面处有混合层出现,而且混合层厚度不再 随 x 增大而变化,也不受 Mo 层厚度的影响^[9]. 对电子束蒸发沉积的 Co/Cr 多层膜, Stearns 等^[1]发现界面层厚度随调制周期(L)增大而增 加,当L超过7nm后,界面层厚度不再增加.界 面粗糙度是表征界面微结构的另一个重要参 数.通常,界面粗糙度随周期数增加而增大,这 是相关粗糙度的积累造成的.反应室真空度也 是影响界面粗糙度的重要因素,低真空生长的 金属磁性多层膜通常会引入较高的界面粗糙 度,而高真空和超高真空中生长的多层膜其界 面粗糙度一般差别不大.

3.2 多层膜的织构和结构相变

影响多层膜结构取向的因素很多,如衬底、 缓冲层、调制周期、界面结构、生长方式、热处理 等. Nakatani 等人^[4]用 XRD 研究了不同缓冲层 的 NiFe/Cu/NiFe/FeMn 三明治结构,结果发 现,以Nb,Ta,Ti,Zr或Hf作缓冲层,薄膜 FeMn,NiFe 表现出明显的(111)织构,与 TEM 的观察结果完全一致.这表明.选择适当的缓冲 层,能够优化多层膜的结构取向,其中 Ta 已成 为目前自旋阀结构中常用的缓冲层材料.

X射线研究还发现,金属磁性多层膜的晶 面间距和结构取向通常随子层厚度变化而变 化. 例如,在Fe/Al 多层膜中,如果Al 层厚度保 持为 20Å, Fe 的晶面间距随 Fe 层厚度减小而 增大,对应衍射峰强度降低;若 Fe 层固定在 100Å,当 AI 层厚度从 25Å减小到 15Å时, Fe 由(110)取向演变为(200)取向,并出现类无定 形结构. 对于 Ru/ Fe(001) 多层膜,当 Ru 层厚 度超过 3.5Å后,多层膜由体心正方(bcc)结构 转变为密排六方(hcp)结构. Prieto 等^[10]用 XAS研究了溅射生长的 Co/Cu 多层膜的结构 行为,结果表明,当 Cu 层厚度 t_{Cu} > 20Å时,Co 表现为面心立方(fcc)结构,与Co层厚度无关; 当 $t_{Cu} < 20$ Å时,则有类 bcc 结构出现.他们根 据 Co 层的岛状生长模式很好地解释了此现 象.

Suzuki 等^[11]研究了混合层对 Co/ Cu 多层 膜结构取向的影响.他们发现.在没有混合层的 情形,HAXRD 谱显示出较弱的(111)和(200) 衍射峰;当混合层厚度为 0.5Å 和 1.0Å 时, (111) 衍射峰消失,(200) 衍射峰增强;当混合层 厚度增至 1.5Å后,其衍射模式则变得与无混 合层情形相似.

多层膜的结构取向、晶化程度通常因生长 方式、工艺条件的不同而表现出很大差异.例如 蒸发沉积的 Co/Ru 三明治结构表现出良好的 单晶相:而溅射生长的薄膜则表现为多晶态.高

物理

· 304 ·

真空中溅射生长的 Co/Cu 多层膜,(111)与 (100)取向的晶化体积比为5 3;在超高真空情 形,则(111)与(100)取向的晶化体积比变为 10 1,表明在超高真空中沉积的薄膜有更好的 择优取向.

4 金属磁性多层膜的磁结构

所谓磁结构即微观磁矩在空间的取向分 布,它包括磁畴结构、磁矩的空间排列以及磁矩 间的相互作用等.极化中子反射(PNR)是分析 薄膜磁结构的有力工具.图2反映了PNR的4 种自旋极化散射截面 (++)、(--)、(+ -)和 (-+),其中+(-)代表中子自旋态在 反射前后平行(反平行)于所加的磁场,Q为波 矢.无自旋反转(NSF)的散射(前两种)反映了 原子核在空间排列的周期性结构;自旋反转 (SF)的散射(后两种)反映了垂直于自旋方向 的磁化强度分布.

图 2 Fe/Cr(001)多层膜的 4 种自旋极化散射截面

Bland 等^[12] 用 PNR 研究了沉积于 Cu (001)上的fcc Co 和fcc Fe 膜,发现 Co 的磁矩 接近体材料的原子磁矩,而 Fe 的磁矩却几乎为 零.对于 Ag/ Co/ Ag(001)三明治结构,PNR 研 究发现,当 Co 仅有 1 --2 个原子层(ML)时,膜 中仍能看到磁有序排列,Co 的原子磁矩接近 2.0µ_B,明显高于 hcp 相的 Co 原子磁矩 28卷(1999年) 5期 (1.7µ_B);当 Co 层为 3ML 时,其原子磁矩接近 1.7µB;Co层继续增厚,则Co原子磁矩显著减 小,可能与应变诱导结构无序的出现有关,对于 Pd/Co/Pd 三明治结构.即使 Co 层达 21 Å 厚. 每个 Co 原子的磁矩仍高于体材料的原子磁 矩. Pasyuk 等人^[12]还发现,界面磁矩仅存在干 与 Co 膜最接近的两个 Pd 单层内,平均大小为 0.4µB.外延生长的 Ag/ Fe/ Ag (001) 表现出类 似的磁结构行为.Lin Tao 等人^[13]研究了 Ru 层 厚度对 Ru/Fe(001)多层膜磁结构的影响,结果 发现当 $t_{Ru} < 3.5$ Å时, Fe 的磁矩几乎不变, Ru 的磁矩随 t_{Ru}增大而减小,多层膜表现出铁磁 性; t_{Ru}超过 3.5Å后, Fe 和 Ru 的磁矩消失, 多 层膜表现为顺磁态.在 Fe/Cr(001)多层膜中, Schreyer 等^[12]证实了 Fe 层中的磁矩通过 Cr 层的非共线排列,并预期了双二次交换耦合的 存在.

5 金属磁性多层膜的结构与 GMR 的关 系

材料结构决定材料的性能,性能反映材料的结构.在金属磁性多层膜中,各种结构参数, 如磁层厚度和非磁层厚度、周期数、缓冲层和覆 盖层、结构取向以及由于改变生长条件而引起 的不同的结构完美性等,对巨磁电阻的大小均 有极其重要的影响.

5.1 磁层和非磁层厚度的影响

图 3 给出了典型的 GMR 随磁层和非磁层 厚度 t_N 的变化关系. GMR 随非磁层厚度增大 而减小,一般认为这是由两方面的原因造成的, 一是非磁层的稀释效应,即沿膜面的电流被非 磁层所短路,使 GMR 按 1/ t_N 衰减;二是非磁 层内自旋无关散射的作用,由于自旋无关散射 只对总电阻有贡献,对 R 没有影响,这也会导 致 GMR 随非磁层厚度按指数衰减.实际上,不 少多层膜的 GMR 随非磁层厚度的增大是振荡 衰减的,这是由于磁性层间的交换耦合作用随 非磁层厚度增大而周期性变化的缘故. Pizzini 等人的研究结果表明, GMR 随非磁层厚度的

· 305 ·

振荡变化与多层膜的微结构有关^[14].他们发现,在 Fe/Cu 多层膜中,GMR 的第一极大值对应的 Cu 层厚度与 Cu 由 bcc 向 fcc 结构转变的临界厚度几乎相同,第二极大值对应的 Cu 层厚度与 Cu 层出现(111)织构的临界厚度大致符合.GMR 随磁层厚度 tF 的变化(图 4),反映了平均自由程与磁层厚度的消长、体散射和界面散射的竞争、短路效应等信息.在 tF 较小的一侧,GMR 随 tF 增大而增大,这是由于磁层内体自旋相关散射随 tF 增大而增为;在 tF 较大的一侧,短路效应已超过了体自旋相关散射对GMR 的贡献,平均自由程与磁层厚度之比随磁层厚度增大而减小,因而 GMR 随 tF 增大而减小.

图 3 Co/Cu 多层膜巨磁电阻与 Cu 层厚度的关系 (实心圆圈对应的曲线为实验结果, 其余曲线为理论计算结果)

5.2 周期数的影响

· 306 ·

GMR 随多层膜周期数增加而增大,当总 膜厚与平均自由程相当时,GMR 趋于饱和.刘 楣等^[15]分析了巨磁电阻多层效应的起因,其一 是界面粗糙度随周期数增加而增大,界面自旋 相关散射作用增强.其二是随周期数增加,表面 散射作用减弱,界面自旋相关散射权重增强.此 外,随周期数增加,缓冲层和覆盖层的分流作用 相对减弱,也是 GMR 增大的一个原因.

5.3 缓冲层和覆盖层的影响

在衬底上沉积适当厚度的缓冲层,能够改善多层膜织构,降低层厚起伏和界面粗糙度,从而对 GMR产生重要影响.例如,以 Fe 或 Cr 作缓冲层的 NiFeCo/Cu 多层膜,具有比较平整的层状结构,GMR 随相关粗糙度增大而增大.为防止氧化,在多层膜表面通常要沉积一层覆盖层.一般地,缓冲层和覆盖层的短路效应会引起多层膜 GMR 减小.最近有人发现^[16],在 Co/Cu/Co,NiFe/Cu/NiFe,NiFe/Cu/Co等三明治结构的表面和底部各长一层 NiO,有助于 GMR的提高,其原因可能是外部边界自旋无关散射减小,界面自旋相关散射作用相对增强.

5.4 多层膜织构对 GMR的影响

织构对 GMR 有显著影响. 多层膜的织构 通常可由衬底、缓冲层、层厚以及不同的生长条 件加 以控制. 例如,以 Fe 作缓冲层,能够诱导 NiFe/Cu (111), NiFeCo/Cu (111)多层膜中 (200)取向的出现,多层膜饱和场降低,GMR 增大. Fe/Cr 系统中,(100)取向的多层膜具有 最大 GMR. 对于 Co/Cr 多层膜,(211)取向比 (100)取向有更高的 GMR. Co/Cu 多层膜 GMR 对结构取向的依赖比较复杂,大多数研究表明, (111)取向的薄膜有最高的 GMR. 也有报道称 具有(111)和(200)织构的 Co/Cu 多层膜易于 获得较高的 GMR. Kingetsu 等^[17]比较了 (111),(110)和(100)取向的 Co/Cu 多层膜,结 果发现(110)取向的 GMR 最小,最大 GMR 出 现在(100)取向的多层膜中.

5.5 界面结构对 GMR的影响

多层膜的实际界面一般为 1 —2 个原子层 的过渡区,传导电子在界面处往往会受到强烈 的散射.界面自旋相关散射是 GMR 产生的关键原因.在多层膜的界面处插入其他金属已证实了界面散射的重要性.例如在 Fe/Cr 多层膜的界面处插入几埃厚的 Au,Ag,Al,Ge 或 Ir 后,GMR 急剧减小,插入 V 或 Mn 后对多层膜的 GMR 几乎没有影响.表明 Fe 与 Cr,V 或 Mn 形成的界面有相似的散射性质,而与其他元素形成的界面散射作用明显减弱.在 Fe/Cu 和 NiFe/Cu 中插入 Co 薄层,GMR 减小.显然,Co/Cu 界面比 Fe/Cu 界面有更强的自旋相关散射.

在不同系统中,界面结构对 GMR 的影响 是非常复杂的.对于 Fe/Cr 多层膜,自旋相关散 射发生在界面处,适当的界面粗糙度对 GMR 有利.但也有结果表明^[18],界面粗糙度对 CMR 有利.但也有结果表明^[18],界面粗糙度增大只 会导致 GMR 减小.对于 Co/Cu 和 NiFe/Cu 系 统,界面结构对 GMR 的影响主要包括:(1)针 孔和其他类型的桥联作用容易使铁磁层之间发 生铁磁耦合,从而会降低或抑制 GMR,但选择 适当的缓冲层和降低生长温度能够使情况得以 改善;(2)界面区成分互混通常会引起界面粗糙 度增大,层间反铁磁耦合减小,自旋相关散射增 强,GMR 值降低;(3)不同结构取向会引入不 同界面粗糙度,对 GMR 有重要影响.已有的研 究表明,具有较平整界面的 Co/Cu 和 NiFe/Cu 多层膜易于获得较高的 GMR 值.

由于 GMR 主要起源于界面自旋相关散 射,因此界面磁结构对多层膜 GMR 有非常重 要的影响.例如,在 Ni/Cu 和 NiFe/Cu 自旋阀 结构中^[19],界面原子磁矩因界面原子互扩散而 减小并变得杂乱无序,从而导致 GMR 显著降 低.

6 结束语

巨磁电阻效应的发现,开创了凝聚态物理

学和材料科学的新篇章,对信息高速公路产生 了革命性的影响.只经历了短短几年,GMR 效 应就在应用方面取得了重要进展,例如 IBM 公 司已研制出磁记录密度高达 10¹⁰ bit/in² 的 GMR 硬盘读出磁头的原型;利用 GMR 效应设 计的高容量、高性能随机存储器也问世了.尽管 目前还处于研究和探索阶段,毋庸置疑,随着技 术的高速发展和材料结构的深入研究,GMR 效应的基础研究和应用开发不久将会取得更大 进展.

参考文献

- [1] Stearns M B et al. Phys. Rev. B ,1989 ,40 :8256 -8269
- [2] Snoeck E et al. J. Magn. Magn. Mater., 1995, 151: 24-32
- [3] Bailey W E et al. J. Appl. Phys., 1996, 79:6393-6395
- [4] Nakatani R et al. Jpn. J. Appl. Phys., 1994, 33:133 —
 137
- [5] Koike J et al. In: Thompson C V, Tsao J Yeds. Evolution of Thirr Film and Surface Microstructure. Pittsburgh: MRS, 1991.13–18
- [7] Huai Y et al. Phys. Rev. B, 1993, 48:2568-2576
- [8] Joo S et al. J. Magn. Magn. Mater, 1992, 104–107; 1753–1754
- [9] Luo G et al. Phys. Rev. B, 1997, 56:3290-3295
- [10] Prieto C et al. J. Magn. Magn. Mater., 1996, 161:31-36
- [11] Suzuki M et al. J. Appl. Phys., 1993,74:4660-4663
- [12] Majkrzak C F. Physcia B , 1996 , 221:342-356
- [13] Lin Tao et al. Phys. Rev. B, 1998, 58:862-868
- [14] Pizzini S et al. Phys. Rev. B, 1992, 46:1253-1256
- [15] 刘 楣等. 低温物理学报,1993,15:1-13
- [16] Swagten H J M et al. Phys. Rev. B, 1996, 53:9108 9114
- [17] Kingetsu T et al. Jpn.J. Appl. Phys. , 1994 ,33:6168 6172
- [18] Schad R et al. J. Magn. Magn. Mater, 1996, 156:339 340
- [19] Nicholson D M C et al. J. Appl. Phys., 1994, 76: 6805-6807

28卷(1999年)5期