基于单原子的量子计算机 *

徐春凯 徐克尊

(中国科学技术大学近代物理系 合肥 230027)

摘 要 介绍了量子计算机的最新发展状况. 对实现量子计算机的各种实验方法作了简介和比较. 特别是详细介绍了最近 Kane 提出的一种方案. 并提出了一种新的用扫描隧道显微镜(STM)实现基于单原子的量子计算机方案.

关键词 量子计算机,核磁共振,扫描隧道显微镜

QUANTUM COMPUTER BASED ON SINGLE ATOMS

Xu Chunkai Xu Kezun

(Department of Modern Physics, University of Science and Technology of China, Hefei 230027)

Abstract The latest research on quantum computers (QCs) is presented. Some experimental methods to realize QCs are discussed and compared, with particular reference to Kane 's scheme. Furthermore, a new scheme of using scanning tunneling microscopy to realize a QC based on single atoms is proposed.

Key words quantum computer, nuclear magnetic resonance, scanning tunneling microscopy

1 量子计算机的发展

量子计算机的研究可追溯到十几年前 Feynman 和 Deutsch 的工作^[1],但是,直到近年 来 Shor 的大数因式分解量子算法^[2]的提出以 及量子纠错码^[3]的成熟,量子计算机的研究才 有了迅猛的发展. Shor 的算法将分解一个数所 用的时间与这个数的位数的关系从指数关系提 高到多项式关系,大大降低了分解的时间,显示 了量子计算机并行计算的优越性.而量子纠错 码是建造稳定可靠的量子计算机的基础,量子 纠错码的发展成熟,使得建造真正的可实用的 量子计算机成为可能.

最近几年,量子计算机的发展在理论上和 在实验上都十分迅速.新的量子算法的提 出^[4→6],各种纠错码的产生,实验上量子远程 传输(quantum teleportation)^[7]的成功,基本量 子逻辑门"控制非"门的实现^[8→1],2→3 个量 28卷(1999年)6期 子位的简单量子算法的实验实现^[12,13]以及 Kane 的建立较大规模的可实用的量子计算机 方案^[14]的提出,都使得量子计算机一步步地向 着实用阶段发展.相信建造出可实用的量子计 算机的日子不会太远.

2 目前实验上实现量子计算机的 几种方法

2.1 量子位与量子逻辑门

量子计算机由量子位 (qubit) 和量子逻辑 门组成.已经证明,量子计算机的任意操作均可 分解为对单量子位态矢的旋转操作和对二量子 位态的"控制非"(CNOT)操作的组合.因此,实 现量子计算机的基础是如何实现单量子位门和 二量子位 CNOT 门.

* 国家自然科学基金资助项目 1998 - 07 - 23 收到初稿.1999 - 01 - 06 修回

· 337 ·

在实验上,单量子位门较容易实现,而 CNOT门的实现却比较困难.由于对量子位的 测量会影响它的状态,使叠加态发生"塌缩",因 而不能像经典计算机那样,先对量子位的态进 行测量,再根据结果来操作.在量子计算机中, 必须使量子位相互耦合,处于一种"纠缠态" (entanglement states),这是实现 CNOT门的前 提.

到目前为止,已经提出了多种实现量子计 算机的方案,归纳起来有四种:光腔 QED 方 法、离子阱方法、核磁共振方法和量子点方法. 其中,已在实验上实现了 CNOT 门的主要是前 三种.

2.2 三种主要实验方法简介

2.2.1 光腔 QED 方法

光腔 QED 方法是最早提出的实现 CNOT 门的方法,它利用的是原子与光腔光子的相互 作用.原子的高里德伯能级^[15]、光子的偏振^[9] 都可以作为量子位,量子位之间的耦合通过原 子与光腔作用或光子与光腔作用实现.这种方 法的主要问题是很难实现量子门之间的连接, 而且超导光腔需要极低温,因此这并不是实现 量子计算机的最佳方案.但是,光腔 QED 方法 在量子通信领域有着广泛的应用,量子远程传 输实验^[7]的成功,使量子通信达到了接近实用 的地步.最近又实现了原子的 EPR 对^[16],使量 子通信得到了进一步的发展.

2.2.2 离子阱方法^[17]

离子阱方法用束缚在冷阱中离子的超精细 结构能级作为量子位,用两束频率相差很小的 激光诱导拉曼跃迁来控制量子位的状态.调节 激光的作用时间,可以实现对单量子位态的任 意旋转操作.离子通过相互间的库仑力耦合而 成集体振动,不同的振动模式用不同的声子态 来表示.激光作用时与离子水平振动方向有个 夹角,这样,激光的作用能同时影响离子内部的 能级和外部的集体振动,从而使二者耦合起来. 通过离子的水平集体声子振动,量子位之间实 现了纠缠.离子阱方法的优点是可以直接实现 "多控制位非"门(control^{*}—not)操作,而不必用 单量子位门和 CNOT 门去组合. 但是,由于多 个离子规则排列和多位激光寻址等技术上的困 难,很难实现很多量子位.实验上做到的是利用 一个离子的内部能级和外部振动态作为两个量 子位实现 CNOT 门^[8].

2.2.3 块体核磁共振方法(Bulk - NMR)^[11]

块体核磁共振方法是利用核自旋在磁场中 的寒曼分裂作为量子位,对量子位的操纵由射 频场完成.利用不同的核磁共振频率,可以对不 同的量子位进行操作.与前面两种方法相比, Bulk - NMR 方法不是基于单原子(光子、离子) 的.在这种方法中,量子位是分子中原子的核自 旋,不同原子的核自旋代表不同的量子位,而量 子位的态是由大量同种分子的统计性质来表 现,某一个量子位的态由相应原子的核自旋能 级上的布居决定, 分子中原子之间存在核自旋 相互作用,这正好可以使量子位间产生耦合.得 以实现 CNOT 门. Bulk - NMR 方法的优点是 利用了大量分子的统计性质,因此受外界干扰 小,退相干时间长,而且实验可在室温下进行. 目前已经实现了2个量子位的计算机^[12,13],并 实现了最简单的 Deutsch 算法^[18]及 Grover 快 速查找算法^[4]. 它的缺点是不能实现较多量子 位,随着量子位的增多,分子的选择、量子位的 寻址、信号的读出都将发生困难.从目前的发展 来看,还做不到6个以上的量子位.

2.3 三种主要实验方法比较

2.2 节中介绍的三种实验方法各具特点 (见表 1),但共同的缺点是无法实现大量量子 位.因此,它们只能用来进行一些原理性的研 究,而不能作为建造实用量子计算机的基础.

表 1 三种实验方法的比较

实验方法	优点	缺点
光腔 QED 方法	理论较为成熟 ;在量子 通信领域有较大发展	量子门之间不易连接; 需要低温条件;实验上 做不到很多量子位
离子阱方法	可以直接实现 control ⁿ - not 门	易受干扰 ; 需要低温条 件 ;多量子位有困难
核磁共振方法	受干扰小;实验可在室 温下进行	对于多量子位存在理 论上的困难

2

3 kane 的基于单原子的硅基量子计算 机方案^[14]

3.1 基本原理

这种方案的基础是核磁共振. 与 bulk -NMR 方法不同的是,它的量子位是单原子的 核自旋. 因此,为了防止热激发,实验需要极低 温. 但是,另一方面,量子位的多少却不受限制, 可以形成大规模的量子位系统,从而实现实用 的量子计算机.

方案的基本原理如图 1 所示. 将³¹ P 有规律 地镶嵌在半导体 Si 晶体表面之下,在 Si 晶体表 面上加一绝缘薄层隔离,薄层上是金属电极(A 门和J门).外加纵向的强磁场和横向的射频 场.强磁场使³¹ P 原子的核自旋能级分裂,形成 的二能级系统作为量子位;而射频场可以翻转 核自旋,从而控制量子位的态.金雕电极分为 A 门和J门两种,A 门位于各个³¹ P 原子上方,用 来寻址;J 门位于两两 A 门之间,用来控制量子 位之间的耦合.

3.2 A门和J门

- 7

在低温下,电子会弱束缚在³¹P⁺离子周围, 形成电子云.在位于各个³¹P原子上方的A门 加正电压,可以提升电子云远离³¹P核,改变核 自旋与电子的超精细作用强度,从而控制核磁 28卷(1999年)6期 共振频率,达到"寻址"的目的.而在两个 A 门 之间的J 门加正(负)电压,可以使相邻两³¹ P 原 子之间的电子云重叠(不重叠),即打开(关闭) 两原子的电子 - 电子之间的耦合.这样,不同原 子的核自旋(即量子位)通过同一原子的核自旋 与电子的超精细作用和不同原子之间的电子 -电子作用关联起来,也就是把不同量子位纠缠 起来.A 门和J 门的作用如图 2 和图 3 所示.

图 2 A 门的作用

(在 A 门加正电压,使电子云远离³¹ P 核,减弱了电子与核 之间的超精细作用强度,从而降低核磁共振频率.图中曲线 为核磁共振频率随 A 门电压变化的关系)

[J 门控制相邻³¹P 核间的静电势垒 V,从而增强或减弱电子-电子的交换耦合(与电子云重叠多少有关).图中曲线为 V = 0 时的交换作用频率与相邻³¹P 核间距离的关系]

此外」门还有一个重要作用,就是协助量 子位的读出.J门上电压加大会使电子-电子 作用增强,当作用强度超过一定限度时,核自旋 ·339 · 态的基态和激发态就会对应于电子 - 电子相互 作用态的单态 ())和三态 () -

),这两个态可由测量 A 门间的电容来识别.

3.3 消相干

实验选择 Si ³¹ P 系统来做量子计算机,这 是因为:一方面,³¹ P 的核自旋 I = 1/2,适合作 为量子位;另一方面,自然丰度为 92.3%的²⁸ Si 的核自旋 I = 0,它与³¹ P 的核自旋没有相互作 用,避免了核-核之间自旋耦合带来的消相干. 事实上,在低浓度³¹ P 和低温(T = 1.5 K)下, 电子自旋弛豫时间为几千秒,³¹ P 核自旋弛豫 时间超过 10h.在mK 温度下,声子限制的³¹ P 弛豫时间在 10¹⁸s 量级.因此,这是一个理想的 非消相干系统.

综上所述,Kane的方法利用了目前半导体 加工技术,具有极强的可行性.这个方案的实行 在技术上的问题是,如何将³¹P原子有规律地 镶嵌在 Si 晶体中,如何将 A 门电极做在³¹P原 子上方,以及如何对²⁸Si 晶体的同位素提纯.由 于 Si 中含有 4.7%的²⁹Si(*I*=1/2)和 3.0%的 ³⁰Si(*I*=0),必须把核自旋*I*不为 0 的²⁹Si(它 会与³¹P的核自旋作用而引起消相干)去掉.此 外,方案没有实验的支持.不过,这种方案是目 前实现量子计算机的最可行的方案.如果得到 实验的支持,并解决了技术上的问题,就有希望 制造出可以实用的计算机.

4 利用 STM 实现基于单原子的量子 计算机

尽管目前量子计算机的方案比较多,但最 终实现可实用的量子计算机应该是与晶体相结 合的基于单原子的量子计算机.扫描隧道显微 镜(STM)是目前唯一具有真正原子级分辨率 及能够进行单原子操纵的仪器.因此,在研究基 于单原子的量子计算机时,STM 成为重要的研 究工具.在这里,我们提出一种利用 STM 实现 基于单原子的量子计算机的方案.

4.1 基本原理

· 340 ·

在某种晶体表面有规律地镶嵌其他种类的 单原子,利用镶嵌原子的能级作为量子位.将 STM 探针扫描到镶嵌原子上方,并加脉冲电 压,利用探针电子流激发镶嵌原子,可以控制量 子位.而量子位间的耦合可以通过相邻镶嵌原 子的电子-电子相互作用来实现.

4.2 量子位及单量子位门

量子位利用的是晶体表面上镶嵌的单原 子.对于块状晶体上的单原子,其能级系统是能 带结构,不适于用作量子位.但是,在晶体表面 镶嵌上其他种类原子,则镶嵌原子的能级结构 有可能还保持孤立原子能级结构的特征,可以 用来作为量子位.在它们之中选择一个二能级 系统,一是基态(记为|0),一是亚稳激发态(记 为|1).对于基态和亚稳激发态的识别,可以用 STM 测扫描隧道谱(STS)等方法.由于镶嵌原 子与周围原子的功函数不同,因此可用 STM 来识别,从而进行寻址.利用探针电子束与原子 的相互作用,可实现两态之间的跃迁,实现对量 子位的操作.

图 4 是利用 STM 的基于单原子的量子位 及其操纵的原理图. 将 STM 探针扫描到需要 进行操作的镶嵌原子(即量子位)上方,然后在 探针和样品间加一个电压脉冲,利用隧道电子 束和镶嵌原子的作用,可以使镶嵌原子激发.由 于电子使原子激发有一定的概率,因此在恒定 的电子束流和电压脉冲幅度作用下,使原子激 发有一个平均时间 T₀. 当我们在探针和样品间 加一个脉冲幅度为 U₀、脉冲宽度 T 可调的电

图 4 利用 STM 的基于单原子的量子位及其操纵 (在晶体表面镶嵌原子,镶嵌原子的能级结构保留了孤立原 子的特性.可以选择其基态-亚稳激发态的二能级系统作 为量子位.STM 具有原子级的分辨率,因此可以进行精确 "寻址",并能利用探针电子束对量子位进行操作). 压脉冲时,就能得到基态与激发态的不同叠加态,相当于在二维 Hilbert 空间将量子位的态矢转动 *T*/*T*₀.这样,通过调节 *T*就可以进行对单量子位的任意旋转操作,即实现了单量子位门.

4.3 量子位的纠缠

对于二量子位门和多量子位门,相邻量子 位间的相互纠缠可通过两个量子位的电子 - 电 子相互作用来实现,原子间由于电子云的重叠 而存在电子 - 电子相互作用,其作用强度由电 子云的重叠程度来决定.由于对单量子位的操 作要求不影响其他的量子位,因此两个量子位 间的距离不能太近,这样,量子位间的电子-电 子相互作用较弱,无法对原子的能级产生影响, 但是,可以用类似 Kane 方案的方法,在两量子 位间加一个电极(可用多探针 STM 实现),通 过电极上的电压影响两量子位的电子云重叠程 度,来控制它们之间的耦合.电极加正电压时, 两原子的电子云被吸引到中间,加大了重叠程 度.当电场足够强时,电子-电子相互作用会对 原子能级产生可分辨的影响,这样,通过电子-电子相互作用,可以使两个量子位耦合起来形 成纠缠态,从而可以实现 CNOT门.

STM 是目前唯一能实现原子级分辨的仪器,这里提出的方案充分利用了这一点.利用 STM 的原子级分辨率,可以进行精确的寻址. 而在晶体表面镶嵌原子,可以利用 STM 的单 原子搬迁技术进行表面加工,这已是可以实现 的技术.但是,由于目前单原子识别问题还没有 得到解决,更无法确定单原子所处的态,因此方 案缺少实验的支持.另外,这种方案利用了电 子.电子相互作用来使量子位耦合,作用强度 较小,为了避免由热激发带来的消相干,实验要 在低温下进行.

参考文献

- Feynman R P. Found. Phys. ,1986 ,16:507 -531
 Deutsch D. Proc. R. Soc. London A , 1985 ,400:97 -117
- Shor P W. Algorithms for Quantum Computer Computation:Discrete Logarithms and Factoring. in: Goldwasser S ed. Proc. 35th Annu. Symp. on Found. of Computer Science. Los Alamitos, CA: IEEE Comp. Soc. Press, 1994.124-134
- [3] Shor P W. Phys. Rev. A, 1995, 52:2493-2496
- [4] Grover L K. Phys. Rev. Lett. ,1997 ,79:325 -328
- [5] Brassard G. Science ,1997 ,275 :627 -628
- [6] Collins G P. Phys. Today ,1997 ,50:19-21
- Bouwmeester Dik, Pan Jian Wei, Mattle Klaus et al. Nature, 1997, 390:575 – 579
- [8] Monroe C, Meekhof D M, King B E et al. Phys. Rev.
 Lett., 1995,75:4714-4717
- [9] Turchette Q A, Hood C J, Lange W et al. Phys. Rev. Lett., 1995, 75:4710-4713
- Barenco Adriano, Deutsch David, Ekert Artur. Phys. Rev. Lett. ,1995 ,74:4083-4086
- [11] Gershenfeld N A, Chuang I L. Science ,1997 ,275 :350 356
- [12] Chuang I L , Vandersypen L M K, Zhou Xinlan *et al*. Nature ,1998 ,393 :143 –146
- [13] Jones Jonathan A. Science ,1998 ,280 :229
- [14] Kane B E. Nature ,1998 ,393 :133 -137
- [15] Maître X, Hagley E, Nogues G et al. Phys. Rev. Lett., 1997, 79:769-772
- [16] Hagley E, Maître X, Nogues G et al. Phys. Rev. Lett., 1997, 79:1-5
- [17] Cirac J I, Zoller P. Phys. Rev. Lett. ,1995 ,74:4091-4094
- [18] Deutsch D., Jozsa R. Proc. R. Soc. Lond. A, 1992, 439:553-558

28卷(1999年)6期

7