的造价,减少其重量和体积.

我们完全有理由相信,本世纪末下世纪初, 材料表面、界面科学及薄膜物理化学研究将会 更多地揭示客观世界的奥秘,更快地加速工业 技术革命,从而使人类生活变得更加丰富美好.

参考文献

- [1] Tormp et al. Rep. Prog. Phys. ,1992,55:1165-1172
- [2] Bagally M G, Phys. Rev. Lett. ,1990,65:1913-1915

- [3] Carlisle D et al. Nature, 1996, 381:398-399
- [4] Zhang Zhenyu, Wu Fang et al. Phys. Rev. Lett., 1995,74:3644-3647
- [5] 侯建国. 香山科学会议 92 次学术讨论会纪要,北京, 1998,3
- [6] Lu H. Appl. Phys. A, 1994, 58:203-208
- [7] Stampfl C, Scheffler M. Phys. Rev. Lett. ,in press
- [8] Gerhard E. Science ,1991 ,254 :1750 -1751
- [9] Wise KD. IEEE,1996,1:11–18
- [10] Horben J et al. Appl. Phys. Lett. ,1996 ,69 :4257 -4259

理论预言的氮化碳超硬膜研究新进展*

顾有松 张永平 常香荣 田中卓

(北京科技大学材料物理系 北京 100083)

时东霞 张秀芳 袁 翻

(中国科学院物理研究所北京真空物理实验室 北京 100080)

摘要 - C₃N₄的理论预言发表之后,经过广大科学工作者近10年的努力,已经取得了一些重要进展.理论上对碳氮化合物的研究已经更为广泛和深入.实验合成方面也取得了长足的进展.文章作者在Si、Pt等基底上初步合成了晶态的 - C₃N₄薄膜,实验分析表明,薄膜主要由 - 或 - C₃N₄晶相组成,成分接近理论值,N/C原子比接近4/3,并且薄膜中的C和N以C⁻⁻⁻N单键结合. 关键词 - C₃N₄,超硬材料,新进展

EXPERIMENTAL REALIZATION OF SUPER- HARD CARBON NITRIDE FILMS

Gu Yousong Zhang Yongping Chang Xiangrong Tian Zhongzhuo

(Department of Material Physics, University of Science and Technology in Beijing, Beijing 100083)

Shi Dongxia Zhang Xiufang Yuan Lei

(Beijing Laboratory of Vacuum Physics, Institute of Physics, The Chinese Academy of Sciences, Beijing 100080)

Abstract Since the prediction of $-C_3N_4$ as a hard material, important experimental progress has been made recently. Our group has succeeded in synthesizing crystalline films of - or $-C_3N_4$ on Si and Pt substrates, with an N C atom ratio close to 4 3 and single bonding of C—N. Key words $-C_3N_4$, hard material, new progress

1 引言

金刚石是自然界存在的最硬物质,人们通常用它来定义硬度的单位.美国科学家 Cohen

28卷(1999年)8期

教授根据在研究一系列材料的弹性模量时提出 来的一个半经验公式,推断碳氮化合物可能具

* 国家自然科学基金资助项目 1998 - 12 - 02 收到初稿,1999 - 03 - 01 修回

· 479 ·

有超过金刚石的硬度.这种共价化合物的晶体 结构类似于氮硅间共价化合物 - Si₃N₄,因此 被称为 - C₃N₄^[1]. 后来他又根据量子力学理 论从第一性原理出发,计算了这种化合物的性 能,结果表明, - C₃N₄ 具有较大的聚合能,力 学结构稳定,因此它至少能以亚稳状态存在,并 且其弹性模量与金刚石相当^[2].

上述理论预言发表后,立即引起了许多科 学工作者的关注.在以后的几年中.无论是在理 论预言方面还是在实验合成方面都进行了大量 的研究工作.大量的研究工作表明.这种材料除 了有很高的硬度、低摩擦系数和耐磨特性外,它 有较大的禁带宽度,可能是一种理想的发蓝光 材料或高温半导体材料,也有可能是一种理想 的场致发射材料,它的合成无疑将是材料科学 界的一项重点突破,并将带动其他有关学科的 发展.而且.这种自然界不存在物质的人工合成 将标志着随着自然科学的发展,人类已经能够 利用已经掌握的知识、设计出符合特殊需要的 高性能材料.

经过近 10 年的努力,在理论和实践两方面 都取得了较大进展,在 - C₃N₄的研究方面,至 今已发表的文章有 400 -- 500 篇. 特别是 1996 年以后发展很快,每年都发表上百篇文章,并已 有不少研究小组拿出较好的结果,已有不少文 章报道合成了下列材料: $-C_3N_4$. $-C_3N_4$. $(C_x Si_{3-x}) N_4$ 或 CN 等等. 但到目前为止,仍然 没有研究小组能够拿出足够的、完整的证据、从 结构、成分、C⁻⁻N 成键状态以及性能上证明 已真正合成了晶态的 - C₃N₄.

其中存在的主要问题有:第一,含氮量一般 偏低(N/C<1),只有少数研究小组报道了碳氮 比达到 4/3 的碳氮膜;其次,晶体结构数据不完 整,没有成套的 X 射线衍射(XRD)或电子衍射 (ED)数据:第三.成键状态不明.氮碳间没有全 部以共价单键结合:最后,硬度和体弹性模量偏 低,没有达到理论预计值.

学家 Cohen 根据在研究一系列硬物质的弹性模 量时得到的半经验公式[1]

$$B(\text{GPa}) = \frac{1971 - 2201}{d^{3.5}(\text{A})}$$

而作出的.他发现物质的弹性模量与键长 d 的 3.5 次方成反比(式中 1 为离子化程度).因此, 两种元素间的共价键越短,弹性模量越大,在自 然界中,能以共价键形成网络结构的物质中,具 有最短共价键的是碳和氮的共价化合物(氟和 氧的未成对电子太少,不足以形成网络结构). 如果碳氮间能形成稳定的共价化合物,那么,由 于 C-N 键比金刚石的 C-C 键短,其弹性 模量可能比金刚石大.并参照氮与硅形成的化 合物 - Si_3N_4 ,提出了碳氮化合物可能存在的 结构是 - C₃N₄.

不久, Cohen 又从第一性原理出发, 根据赝 势法对总能的计算,发现 - C₃N₄ 具有较大的 聚合能和稳定的结构,因此至少能以亚稳态存 在^[2].通过第一性原理的计算,发现其弹性模 量为 427 GPa, 与金刚石的数值相当, 这引起了 广泛的关注,激起了人工合成这种物质的强烈 愿望.进一步的理论工作表明, - C₃N₄除了具 有较高的弹性模量之外,还有许多其他优异性

图 1 Teter 和 Hemley 研究的 5 种 C₃N₄ 化合物的晶体 结构示意图 (a) 相;(b) 相;(c) 立方相;(d) 赝立方相;(e) 石墨相

物理

碳氮化合物的理论研究 2

对于 - C₃N₄ 的理论预言是美国理论物理 · 480 ·

能,如较宽的禁带宽度,高热导系数等^[3].

后来,使用更加精确的方法,经更全面、广 泛、深入地研究氮碳间可能形成的化合物后,得 出了进一步的结果. Teter 和 Hemley 研究了 5 种可能的碳氮化合物,包括 相、相、立方相、 赝立方相和石墨相^[4]. 其晶体结构如图 1 所示. Cohen 在实验合成 - C_3N_4 遇到极大困难的情 况下,又计算了 8 种碳氮比为 1 的 CN 化合 物^[5],以探讨可能存在的其他形式的碳氮化合物.

3 实验合成尝试

在实验合成方面,碳氮膜的合成早在 Cohen 的理论预言之前就已经开始^[6]. 早期的工 作主要是研究碳膜中加氮对其性能的提高,这 方面的工作现在还在进行.由理论预言引发的 大量研究是为了在实验室中人工合成晶态 -C₃N₄,并对其性能进行表征,以获得超硬膜并 验证理论预言的正确性.为了合成这种假想的 超硬物质,几乎使用了所有现有的实验方法,如 高温高压法、离子注入法、物理气相沉积(包括 各种磁控溅射、各种激光熔融、弧光沉积和离子 束沉积等)以及各种化学气相沉积.

其中的物理气相沉积法 (PVD) 是使用得最 早和最多的方法,人们对其进行了大量的研究, 不少文献报道了通过 TEM 和 ED 在碳氮膜的 基体中检测到 - C_3N_4 晶粒^[7]. 但进一步的研 究表明^[8],用这类方法制备的碳氮膜中的氮含 量没有达到应有的数值 (57%),最多不超过 50%;以 sp³结合的 C 的比率也不够大,而且还 随氮含量的增加而减小;从红外和拉曼谱上观 察到 C=N 和 C-N 键,其含量随着氮含量 的增加而增加;所制备的膜在高温下不稳定,会 失去氮成分.

化学气相沉积法 (CVD)包括许多种,如各 种微波等离子体 CVD 法、各种热丝 CVD 法、电 弧等离子体 CVD 法等.化学气相沉积法的使用 比较晚,但取得的进展却很大.已有文献报道了 用 CVD 方法制备的碳氮膜的 N/C 达到 4/3, 28卷 (1999年) 8期 并且检测到 - C_3N_4 和其他相的 C_3N_4 晶体 $^{[9,10]}$.

我们采用微波等离子体法 (MPCVD) 制备 碳氮薄膜. 实验条件如下:基底材料为单晶 Si 和多晶 Pt 片,工作气体为 CH₄ 和 N₂,流量分别 约为 1 和 100sccm,工作压强为 2500—3000 Pa, 基底温度为 800—1000 ,得到了含有 - C_3N_4 和 - C_3N_4 晶相的碳氮薄膜.

4 分析测试结果

在实验室中制备出碳氮膜后,需要对所制 备的薄膜进行一系列的分析测试,以确定薄膜 中所含有的物相,并表征其性质.在这方面进行 的分析测试主要包括以下几个方面:(1)表面形 貌观察;(2)薄膜成分分析;(3)晶体结构分析或 物相分析;(4)键合状态探讨;(5)硬度测试,等. 然而,由于自然界不存在这种物质,没有标准物 作为对照.在是否已经制备出了 - C_3N_4 或 - C_3N_4 晶相物质的问题上,没有明确的标准.

4.1 表面形貌观察

进行表面形貌观察的主要方法是扫描电镜 (SEM),有时也用透射电镜(TEM)、原子力显 微镜(AFM)和扫描隧道显微镜(STM).大部分 用 PVD 法生长的薄膜是连续光滑的;而大部分 用 CVD 法生长的膜上可以观察到明显的晶态 颗粒.图 2 是用 Hitachi S - 4200 扫描电子显微 镜观察到的用 MPCVD 法生长的碳氮膜的表面 形貌照片.从照片上可以看出,该碳氮薄膜是由 晶态颗粒组成的,并且还比较致密.

4.2 化学成分分析

薄膜的化学成分分析是判断是否已经成功 合成 - C₃N₄ 的一个重要条件.由于所制备的 样品大部分是薄膜,而 C 和 N 又都是轻元素, 因此,对其成分的测定存在一定的困难.通常采 用的分析方法有 X 光能谱(EDX)、俄歇电子能 谱(AES)、X 射线光电子谱(XPS)和卢瑟福背 散射(RBS)等.各种测量方法有各自的特点,如 EDX和 AES 能进行指定点的成分分析,AES 和 XPS 可以分析表面层的成分等.

· 481 ·

图 2 用 MPCVD 法生长的碳氮膜的表面形貌照片

用不同方法和在不同条件下制备的样品的 成分变化较大.大部分样品的氮碳比远远小于 合成 - C₃N₄ 的要求.所有用 PVD 法制备的样 品中,氮含量不超过 50 %.已有文献报道,只有 少数在特定条件下用 CVD 法制备的碳氮膜样 品能达到足够氮含量.

我们用 MPCVD 法制备的碳氮膜用带有超 薄窗口的 Oxford 6566 探测器测量了其 EDX 谱,并计算了成分. 较典型的结果如下:硅基底 上的碳氮膜的 C,N,Si 成分分别为 31 %,42 %, 27 %;Pt 基片上的碳氮膜的 C,N,Pt 的成分分 别为 31 %,49 %,20 %.这些样品中的碳氮比接 近理论预言的要求,而基片峰的出现是由于作 EDX 的电子束的透入深度大于膜厚引起的.

对样品的 X 射线光电子能谱分析表明 C, N,O 和 Si 的原子百分比分别为 20.8%, 26.3%,12.2%和 40.7%,N/C 为 1.26,也接 近理论值.由于 XPS 测量的是整个样品的表面 层成分,结果与EDX值有一定的差别.图3给出

图 3 碳氮薄膜 XPS 的 C 1s, N 1s 和 Si 2p 峰的峰形 及其分析

表 1 C 1s,N 1s 和 Si 2p 的 XPS 分谱的峰形分析结果

XPS 峰	分峰面积	峰位/ eV	峰宽/ eV	峰高	成分 (%)	总成分 (%)	化学键
C 1s	1033	286.17	2.29	360	16.9	20.8	C-N
	233	288.87	3.15	59	3.9		C N
N 1s	2764	399.46	2.04	1083	24.3	26.2	N-C
	219	402.14	2.63	66	1.9		N-0
Si 2p	1789	103.69	2.18	655	35.2	40.8	Si—O
	288	101.24	1.89	122	5.6		Si N

了 C 1s,N 1s和 Si 2p的 XPS 峰的峰形分析. 这些 XPS 峰的分峰、成分和对应的化学态 如表 1 所示,其结果表明碳氮以共价键结合.应 物理

· 482 ·

当指出的是,对于 XPS 化学位移对应的化学态 的认定,文献中的看法并不统一,差别较大,表 中对键合状态的认定是根据文献中的主流意见 确定的.

4.3 晶体结构测定

除了薄膜成分的测定,还要确定样品中所 含的晶相晶体结构,也即进行相分析.相分析的 常用方法是 X 射线衍射(XRD)和电子衍射 (ED).XRD分析是针对整块样品的平均结果, 精确度高,而 ED 能结合电镜成像对样品的局 部做选区衍射.在一定的条件下,也可用高分辨 电镜(HRTEM)直接观测原子结构.

由于 - C₃N₄ 没有标准谱,只能与理论计 算的 X 射线衍射谱进行比较.目前制备的大部 分碳氮膜的 X 射线衍射谱与理论计算的谱的 差别较大,主要表现在谱线中只有部分谱线与 理论谱相符.电子衍射的测量也一样,只有少数 小组报道了较好的选区衍射谱^[7,9].

我们对 MPCVD 法生长的碳氮膜进行了 X 射线衍射分析. 在硅片上得到了较为完整的 X 射线衍射谱,但其中也有 - Si₃N₄ 的峰出 现.为了减少基底的影响,选择了不与 C 和 N 反应的 Pt 作为基底,并测量了其 X 射线衍射 谱. 两种样品的 X 射线衍射结果如图 4 所示. 表 2 列出了谱中各峰的面间距,从表中可以看 出,属于 - C₃N₄ 的衍射峰基本相同,说明在这 两种基底上生长的薄膜中都形成了 - C₃N₄ 的 晶相.

图 4 在 Si 和 Pt 基片上生长的碳氮膜的 X 射线衍射结果

4.4 红外和拉曼谱分析 红外(IR)和拉曼(Raman)谱分析是由晶体 28卷(1999年)8期

的振动谱确定原子间的键合情况的实验手段, 可以进一步判断是否合成了 - C_3N_4 . 一般认 为小于 1300cm⁻¹的红外吸收峰说明存在 C⁻⁻N 单键,大于 2000cm⁻¹的谱线说明存在 C⁻⁻N 键,中间的谱线说明存在 C⁻⁻N 双键. 大部分用 PVD 法制备的碳氮膜有较强的 C⁻⁻N 峰.我们用 MPCVD 法制备的碳氮薄膜 的 FT - IR 谱(傅里叶变换红外谱)中,除了出 现一些较弱的 Si₃N₄ 峰之外,还有两条很强的 谱线,位于 853cm⁻¹和 888cm⁻¹处,说明其中的 C和N以 C⁻⁻N 单键结合为主.

	Si		H	Pt	- (
序号	面间距/ A	强度/任 意单位	面间距/ A	强度/任 意单位	晶面 指数	面间距/ A	强度/ 任意 单位
1	4.111	55	4.187	57			
2	1732	1	3.911	38			
3	3.811	30	3.767	28			
4	3.257	100	3.419	39			
5	3.081	95	3.140	96	110	3.201	36
6	3.007	280	3.064	270			
7	2.712	104	2.754	27	200	2.772	100
8	2.477	183	2.509				
9	2.319	60	2.342	78			
	2.267	77	2.298	32	101	2.206	63
10	2.089	113	2.063	98	210	2.095	41
	1.966	37					
	1.907	70	1.927	20	111	1.922	59
11	1.867	123	1.885	106			
12			1.751	38			
13	1.691	112	1.705	38			
14			1.643	36			
15	1.598	47	1.610	54	220	1.600	2
16			1.588	38	211	1.580	12
17	1.519	57	1.528	45	310	1.538	10
18	1.468	26	1.445	40	301	1.465	12
19	1.294	30	1.294	76	320	1.272	12
20	1.044	36	1.047	30	212	1.043	6

表 2 硅和铂基片上生长的碳氮薄膜的 X 射线衍射结果

对于 Raman 谱的分析,是根据与类似结构 的物质比较来推算的,如 Yan 和 Chou 根据 -Si₃N₄ 的 Raman 谱^[11],和胡克定律估算了 -C₃N₄ 的特征峰.实验中也观察到了与估算的特 征峰接近的实验谱^[10].我们对硅上生长的膜进 行了分析,观察到在低位移处出现了 251cm⁻¹ 和 302cm⁻¹两条谱线,与估算的 - C₃N₄ 的 Raman特征峰值基本相符.

5 结束语

自从 - C_3N_4 的理论预言发表之后,经过 广大科学工作者的努力,已经取得了一些重要 进展.理论上对碳氮化合物的研究已经更为广 泛和深入.实验合成上也取得了长足的进展.已 在成分、晶体结构和化学键等方面与 - C_3N_4 相符或相近的报道.我们在 Si、Pt 等基底上初 步合成了晶态的 C_3N_4 薄膜,实验分析表明,薄 膜主要由 - C_3N_4 晶相组成,成分接近理论值, N/C 原子比接近 4/3,并且薄膜中的 C 和 N 以 C—N 单键结合.

参考文献

[1] Cohen M L. Phys. Rev. B, 1985, 32(12):7988-7991

- [2] Liu A Y, Cohen M L. Science, 1989,245:841-842
- [3] Cohen M L. Mater. Sci. & Eng. A, 1996, 209:1-4
- [4] Teter B M, Hemley R J. Science, 1996, 271:53-55
- [5] Cote M, Cohen M L. Phys. Rev. B, 1997, 55 (9): 5684-5688
- [6] Cuomo J J , Leary P A , Yu D et al. J. Vac. Sci. Technol. ,1979 ,16(2) :299 –302
- [7] Niu C M, Lu YZ, Lieber C M. Science, 1993, 261:
 334-337
- [8] Zhang Z J, Fan S S, Lieber C M. Appl. Phys. Lett., 1995,66(26):3582-3584
- [9] Chen Y, Guo L P, Wang E G. Phil. Mag. Lett., 1997.
 75(3):155-162
- [10] Werninghaus T, Zahn D R T, Wang E G et al. Diamond and Related Mater. ,1998,7(1):52-56
- [11] Yen T Y, Chou C P. Appl. Phys. Lett. ,1995 ,67 (5) : 281-283

光学分数傅里叶变换及其应用

张	岩	顾本源	7	杨国桢
(中国	科学院	記物理研究所	北京	100080)

摘要 介绍了分数傅里叶变换的定义及其性质,给出了分数傅里叶变换的光学实现结构,并对分数
 傅里叶变换在光学信息处理领域中的应用进行了综述.
 关键词 分数傅里叶变换,光学信息处理

OPTICAL FRACTIONAL FOURIER TRANSFORM AND ITS APPLICATIONS

Zhang Yan Gu Benyuan Yang Guozhen

(Institute of Physics, The Chinese Academy of Sciences, Beijing 100080)

Abstract The fractional Fourier transform, which is a generalization of the conventional Fourier transform, is introduced. Its definitions, properties, and optical implementations are presented. Some applications in optical information processing are discussed.

Key words fractional Fourier transform, optical information processing

1 引言

在数学中,有许多变换和运算的最初定义

都是针对整数级次的,随着研究的深入以及适 应各种应用的要求,它们的定义从整数级次推

物理

* 国家自然科学基金资助项目

1998 - 11 - 12 收到初稿,1999 - 01 - 04 修回

· 484 ·

7