

同步辐射讲座 第一讲 同步辐射 XAFS 实验站及其应用^{*}

韦世强'谢亚宁'徐法强'胡天斗'刘文汉'刘 涛'

(1中国科学技术大学国家同步辐射实验室 合肥 230029)

(2中国科学院高能物理研究所北京国家同步辐射实验室 北京 100039)

摘 要 介绍了北京和合肥同步辐射 XAFS 实验站的性能参数和结构特点,以及在物理、化学、材料和生命科学 等研究领域的应用,便于国内广大用户更好地利用其开展高质量的研究工作. 关键词 XAFS,同步辐射实验站

SYNCHROTRON RADIATION XAFS STATION AND ITS APPLICATIONS

WEI Shi-Qiang¹ XIE Ya-Ning² XU Fa-Qiang¹ HU Tian-Dou² LIU Wen-Han¹ LIU Tao²

(1 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China)

(2 Beijing Synchrotron Radiation Facility , Institute fo High Energy Physics , Chinese Academy of Sciences , Beijing 100039 , China)

Abstract The performance and paprameters of the XAFS stations in the Beijing and Hefei Synchrotron Radiation Laboratory are described in detail, so that XAFS users in China can design their measurements well in advance. In addition, XAFS applications in physics, chemistry, material science and biology are reviewed.

Key words XAFS , synchrotron radiation station

1 引言

XAFS(X - ray absorption fine structure,X 射线吸 收精细结构)技术是同步辐射应用的最重要领域之 --[12], XAFS 现象只决定于短程序的相互作用,不需 要样品具有长程有序结构,并且元素的 X 射线吸收 具有元素特征,可以通过调节 X 射线的能量,对凝 聚态物质的复杂体系中各种元素的原子周围环境分 别进行研究 给出吸收原子邻近配位原子的种类、距 离、配位数和无序度因子等结构信息,在物理、化学、 材料和生命科学等领域有广泛的应用并解决许多重 要问题^{3,4]}.尤其是高亮度的第三代同步辐射(10¹⁸光 子/s)的使用和 XAFS 方法的新发展^[5-10],使原子 XAFS 能够观察原子的价态电子电荷量微小变化 精 度达0.01e),考察表面吸附原子与衬底的相互作用 及电荷的转移情况 X 射线磁圆二色谱 XMCD 具有 元素特征 能够研究半导体材料和生物样品中原子 的电子结构受环境的影响;超快 X 射线吸收和衍射 谱 采集一个 XAFS 谱可以在微秒量级时间完成 ,直 接观察材料中的原子和电子的动力学过程;微区

XAFS 利用特殊的光学聚焦可进行尺寸为微米量级的 XAFS 研究.

在世界各国的同步辐射储存环上,XAFS 站的数 量最多,开展的研究工作和发表的文章数都占有相 当大的比重.在其他常规结构分析手段难以提供有 意义的结构信息的情况下,XAFS 仍能给出像催化 剂、非晶材料、液态物质、生物样品等大无序体系的 结构参数.我国的北京和合肥两个同步辐射 XAFS 站已向用户开放使用,上海的第三代同步辐射光源 正在建设,预示着我国会有更多的光源时间提供给 用户开展研究,为推动我国 XAFS 研究向前发展作 贡献.

2 XAFS 的基本原理

2.1 XAFS 的产生 任何物质对 X 射线都有吸收 ,吸收的大小由该

 ^{*} 国家自然科学基金(批准号:10174068)资助项目、中国科学院
 "百人计划"资助项目

²⁰⁰¹⁻⁰²⁻¹⁶ 收到初稿, 2001-03-01 修回

物质的吸收系数 μ 表示

$$u_x = \ln I_0 / I , \qquad (1)$$

(1)式中 x, J₀, I 分别表示样品厚度、入射光强 度、透射光强度.在某能量位置上,吸收系数陡增,此 时光子能量正好对应于物质中某元素内壳层电子的 束缚能,这位置称为元素的吸收边.在边的高能侧, 吸收系数以一定幅度的振荡形式下降,可延续到边 后 1000eV,该振荡从边后 50—1000eV 区间称 EXAFS. XANES 指能量区间为边前 30eV 至边后 50eV.

2.2 单散射理论

XAFS 产生的物理图像用单散射模型表示如图 1 原子 A 吸收 X 射线后,内层电子由 n 态激发出来 向外出射光电子波,此波在向外传播过程中,受到邻 近几个壳层上配位原子的作用而被散射,散射波与 出射波的相互干涉改变了原子 A 的电子终态,导致 原子 A 对 X 射线的吸收在高能侧出现振荡现象.采 用偶极跃迁近似^[11]则原子 A 的吸收系数为

 $\mu = 4N_0\pi^2 e^2(\omega/c) | M_{fs} |^2 c(E_f), \quad (2)$ 式中 N_0 为单位体积原子 A 的数目 , ω 为 X 射线光 子频率 , $c(E_f)$ 是终态 f 的态密度 , $|M_{fs}|^2 = f|p \cdot \varepsilon|$ s ,p , ε 分别为电子动量、X 射线电矢量 ,s ,f 分别为 电子的初态和终态.

现在 EXAFS 的通用表达式为

$$\chi(k) = \sum_{i} N_{j} F(k \pi) S_{0}^{2}(k) k R_{i}^{2} \exp(-2\sigma_{j}^{2}k^{2})$$

 $\exp(-2R_j/\lambda(k))\sin[2kR_j + \phi(k)],(3)$ k 为光电子波矢, N_j 为 j 壳层原子数, $S_0^2(k)$ 为振幅 衰减因子, R_j 为 j 壳层原子与中心原子距离, $F(k, \pi)$ π)为振幅函数, $\lambda(k)$ 为非弹性散射的平均自由程,

图 1 EXAFS 单散射模型

 σ_i 为热无序因子 , $\phi_i(k)$ 为相移函数.

3 XAFS 实验的基本步骤

3.1 同步辐射 XAFS 装置

图 2 为透射法的同步辐射 XAFS 装置简图,它 主要由光源、单色器、样品台、测量系统和控制系统 五大部分组成.

图 2 同步辐射 XAFS 装置

从同步辐射光源发出的 X 射线经过 Si(111)双 晶单色器后,通过前电离室测量入射光强 I₀, X 射线 透过样品后,用后电离室测量透射光强 I(使用两台 Keithley 6517 静电计分别测量前后电离室内的离化 电荷).全部实验数据和参数由 XAFS 数据采集软件 通过计算机的各种通信接口(IEEE488,RS232)采集 到计算机中.

3.2 样品制备

XAFS 实验方法几乎可以研究所有凝聚态物质, 如超导材料、磁性材料、铁电材料、纳米材料、催化材 料、生物材料等等.对透射 XAFS 探测模式,实验样 品可以是薄膜、粉末和液体,但最佳的样品厚度应满 足吸收台阶高度 μ_T x ≈ 2.6,μ_T 为元素吸收系数.必 须注意,样品应均匀、无裂缝和孔洞,否则会引起 XAFS 的测量误差.对粉末样品,需过 400 目以上的 筛.对于吸收系数很大的样品,可将其粉末与低原子 序数的材料如氮化硼等混合,达到要求的 μx 值.

4 北京和合肥同步辐射 XAFS 实验站的结构 和性能参数

北京同步辐射装置 4W1B 是一条为 XAFS 实验

优化设计的光束线.其光源为一个单周期超导扭摆 磁铁(Wiggler),在储存环电子能量为 2.2GeV 时其辐 射的临界能量为 5.8keV,单色光从固定出口型 Si (111)双晶单色器输出,1991 年向用户开放使用,其 主要性能参数列入表 1.合肥同步辐射装置的储存 环电子能量为 0.8GeV,其辐射的临界能量为 2.4keV,1999 年向用户开放使用,主要性能参数见表 1^[12].

	表1	北京 4W1B 和合肥	U7C 光束线的主要性能参数
--	----	-------------	----------------

各项技术指标	合肥光源	北京光源		
储存环能量	0.8GeV	2.2GeV		
环电流	160mA	100mA		
超导 Wiggler	6Т	1.5T		
单色器接收角(H×V)	$1 \times 0.1 \text{mrad}^2$			
单色器	S(111)平面双晶	S(111)平面双晶		
光斑尺寸	12×1 mm ²	$15 \times 1 \mathrm{mm}^2$		
能量分辨率(△E/E)	3×10^{-4}	3×10^{-4}		
可用能量范围	4.1-13.0keV	4.0-22keV		
最大光子通量	$3 \times 10^9 \mathrm{ph/s}$	$1.3\times10^{10}\mathrm{ph/s}$		
探测系统	电离室充连续流动混合气体 ,Keithley Model 6517 Electrometer			

目前,北京 XAFS 实验站具有三种 XAFS 实验测 试方法:常规透射 XAFS 测试方法、荧光 XAFS 测试 方法及全电子产额 XAFS 测试方法.常规透射法可 以测量 K 吸收边的 21—33 号元素和 L 吸收边的 51—80 号元素.荧光实验采用了 Lytle 公司生产的荧 光电离室为探测器,在本实验站的光强条件下,痕量 元素的检测限可达到 0.01%左右.合肥 XAFS 实验 站具有两种 XAFS 实验测试方法:常规透射 XAFS 测 试方法和原位 XAFS 测试方法.常规透射法可以测 量 K 吸收边的 20—43 号元素和 L 吸收边的 51—100 号元素.

XAFS 实验数据用华盛顿大学编写的 UWX-AFS3.0软件包和中国科学技术大学万小红和韦世 强编写的 USTCXAFS1 软件包进行分析处理^[13,14].图 3 和图 4 分别为实测的合肥 U7C 光束线流强曲线和 EXAFS 全谱.

5 北京和合肥同步辐射 XAFS 实验站的应用

5.1 在物理学研究中的应用

图 5 为在北京同步辐射 XAFS 站利用荧光 XAFS 探测方法测量在 SiO₂ 衬底上外延生长 10 和 105nm Pt 薄膜的荧光 EXAFS 谱.显而易见 ,10nm 和 105nm 厚的 Pt 薄膜的 L_m吸收边的荧光 EXAFS 谱的 EXAFS

图 3 合肥 XAFS 实验站的流强全谱

图 4 Cu 箔的 EXAFS 和近边谱

振荡峰形状基本相似,只是 10nm Pt 样品的信噪比 略低.结果表明,在很薄的 Pt 膜中,Pt 原子的近邻配 位环境结构与金属 Pt 的相近.

5.2 在化学研究中的应用

我国一次能源 73% 来自煤炭.如何洁净、高效 和合理地利用煤炭资源是我们进入 21 世纪的重大 任务,其关键问题是了解煤转化催化剂的制备、结构 与反应性能之间的关系.图 6 为化学还原法制备的

图 5 10nm 和 105nm 外延生长 Pt 薄膜的 L_{II} 吸收边的荧光 XAFS 谱

NiB 和 NiP 超细非晶态合金催化剂在不同退火温度 处理后的径向结构函数曲线^[15]. XAFS 结果定量地 表明,对 NiB 和 NiP 超细非晶态合金的初始样品,第 一近邻Ni—Ni配位的平均键长 R_j 约为 0.271nm,其 结构无序度 σ_s 很大,分别为 0.033 和 0.028nm.在 570 和 623K 温度退火后,NiB 样品晶化生成纳米晶 Ni₃B 和纳米晶 Ni 亚稳物相,NiP 超细非晶合金则晶 化生成多晶金属 Ni 和部分晶态 Ni₃P 混合物相.在 773K 退火且近于完全晶化的情况下,NiB 样品晶化 为金属 Ni,其结构与 Ni 箔的基本一致,但 NiP 样品 的Ni—Ni配位的 σ_s 还较大,仍为 0.0125nm,说明由 于 P 元素的存在,导致晶化生成的金属 Ni 晶格产生 很大的畸变.

图 6 NiB 和 NiP 超细非晶态合金在不同 温度退火后的径向结构函数

5.3 在生命科学研究中的应用

金属 – 血清蛋白的结构研究是生命科学领域的 一个重要课题,这对于揭示生命代谢的作用机理有 重要意义.图 7 为人血清白蛋白 HSA 和牛血清白蛋 白 BSA 中锌元素的荧光 XAFS 谱,通过与模型化合 物的 XAFS 谱进行比较,表明血清白蛋白中的 Zn²⁺ 离子的第一近邻配位由 4 个氮原子配位组成的四面 体结构,排除了胱氨酸(Cys)疏原子优先与 Zn²⁺离子 配位的可能性^[16].

5.4 在材料科学研究中的应用

图 8 为机械合金化制备的 $Fe_{100-x}Cu_x(x = 0,10, 20,40,60,70,80,100,x$ 为原子百分比)样品的 Fe 和 Cu 原子的径向结构函数曲线^{17]}.结果表明,球磨 160h 后, $Fe_{100-x}CU_x(x \ge 40)$ 的 Fe 原子近邻配位结构 从 bcc 转变为 fcc,但 Cu 原子的近邻结构保持其 fcc 不变.与之相反,在 $Fe_{80}Cu_{20}$ 和 $Fe_{90}Cu_{10}(x \le 20)$ 样品, Fe 原子的近邻配位保持其 bcc 结构,而 Cu 原子的近

图 7 血清白蛋白试样和模型化合物的 XAFS 结果

图 8 $\operatorname{Fe}_{100-x}\operatorname{Cu}_x$ 样品的 Fe 和 Cu 原子的径向结构函数

5.5 原位 XAFS 方法在研究中的应用

原位 XAFS 研究金属 Ga 从液氮温度至熔态温 度区间的结构变化 [18] 9为不同温度下金属 Ga 的径 向结构函数曲线^{18]}.对液态金属 Ga 无序体系 ,采用 非对称的原子配位分布给出的 EXAFS 公式进行拟 合计算获得如下结果 :液态 Ga(305K)样品 ,其平均 距离 $R_j = 0.292$ nm ,N = 9.8 , $\sigma_j = 0.019$ nm(为结构无 序 σ_s 与热无序 σ_T 之和),不存在 R = 0.244nm的短 Ga—Ga 键 ,但第一配位层中的 Ga 原子分布在离平 衡距离 R_j 较宽的 R 值范围 ;相对固态样品 ,其键长 增加 0.02nm 左右 ,配位数多 2—3 个原子.这一结构 参数结果能较为合理地解释金属 Ga 固 – 液相变的 结构变化和密度增加 ,认为在固 – 液相变过程中 ,

图 9 不同温度下金属 Ga 的径向结构函数曲线

Ga 原子周围由扭曲的体心立方配位(配位数为 7)逐渐过渡到正交四方配位(配位数为 10).

参考文献

- [1] Abstact of XAFS XI. Japan : Ako 2000
- [2] Kincaid B M , Eisenberger P. Phys. Rev. Lett. , 1975 , 34 :1361
- [3] Koningsberger D C , Prins R. X-ray Absorption , Principles , Applications , Techniques fo EXAFS , SEXAFS and XANES. John Wiley and Sons , Inc. 1988 211
- [4] Lytle F W Sayers D E Stern E A. Physica B ,1989 58(1) .701

· 书评和书讯·

- [5] Oyanagi H ,Kolobov A ,Tanaka K. J. Synchrotron Rad. ,1998 ,5 : 1001 ;1999 6 :155
- [6] Wei S Q Oyanagi H Sakamoto K T et al. Phys. Rev. B 2000 62:
 1883 J. Appl. Phys. 1997 82 4810
- [7] Alagna L ,Goulon J et al . Phys. Rev. Lett. 1998 & 4799
- [8] Gracing Imanishi A ,Ohta T et al . Surf. Sci. ,1998 A07 282
- [9] Fast Sole V A et al. J. Synchrotron Rad. ,1999 & :174
- [10] Micro Heald S M et al. J. Synchrotron Rad. ,1999 & 347
- [11] Brown M et al. Phys. B ,1977 ,15 .738
- [12] 刘文汉,徐法强,韦世强等.物理,2000,29 42[Liu W H,Xu F Q,Wei S Q et al. Wuli (Physics) 2000,29 42(in Chinese)]
- [13] Stern E A ,Newville M ,Ravel B et al . Physica B ,1995 ,208&209 : 117
- [14] 万小红,韦世强.中国科学技术大学 XAFS1.0 软件包,1999 [Wan X H, Wei S Q. USTCXAFS2.0 Software Packages,1999(in Chinese)]
- [15] 韦世强,李忠瑞,殷士龙等.科学通报,2000 45:1943[Wei S Q Li Z R, Yin S L et al. Chinese Science Bulletin 2000 45:1943 (in Chinese)];Wei S Q ,Qyannagi H, Li Z R et al. Phys. Rev. B, 2001 63 224201
- [16] Wei S Q , Oyanagi H , Wen C E et al . J. Phys. CM , 1997 9 :11077
- [17] 周永洽 涨喜全, 贺进田等. 高等学校化学学报, 1997, 18: 851[Zhou Y Q Zhang X Q, He J T *et al*. J. of Chem. in University, 1997, 18 851(in Chinese)]
- [18] Wei S Q ,Oyanagi H ,Liu W H et al . J. Non-Crystalline Solids , 2000 275(3):160

科学出版社物理类图书精品推荐

书名	作译者	定价	出版日期	发行号
驻电极	夏钟福	48	2001年11月	0 - 1370
现代压电学(上册)	张福学等	28	2001年9月	0 – 1349
先进光学制造技术	杨力	48	2001年9月	0 - 1343
经典力学	张启仁	38	2001 年 12 月	0 - 1356
等离子体粒子模拟	邵福球	16	2001 年 12 月	0 – 1522
湍流研究最新进展	王晋军	32	2001年2月	0 - 1233
弹塑性系统的动力屈曲和分叉	韩强	20	2000年3月	0 – 1167
非线性系统的周期振动和分岔	张伟等	35	2001 年 12 月	0 - 1413
非线性物理理论及应用	周凌云等	18	2000年3月	0 - 1133
非线性与量子光学(第二版)	潭维翰	56	2000年11月	0 – 1199

即日起,欢迎各界人士邮购科学出版社各类图书(购书免邮费).凡订阅《物理》杂志全年者,将在购书时 享有一定优惠.

请按以下方式与我们联系: 电 话(010)64011127 64002234 传 真(010)64034622 电子邮件:directselling@sina.com 通讯地址:北京东黄城根北街 16 号 科学出版社 邮政编码 100717 联系人:卢秀明 同时欢迎访问科学出版社网址:http://www.sciencep.com.cn