

同步辐射讲座

第五讲 微电子机械系统加工新方法——LIGA 技术*

刘 刚 田扬超*

(中国科学技术大学国家同步辐射实验室 合肥 230026)

伊福庭 彭良强

(中国科学院高能物理研究所同步辐射实验室 北京 100039)

摘 要 简述了微电子机械系统的起源和特点,介绍了 LIGA 技术的基本原理以及一些相关技术,对同步辐射深度光刻的技术要求进行了详细地说明,并介绍了国内外利用 LIGA 技术进行微电子机械系统研发的现状. 关键词 LIGA 技术,微电子机械系统,同步辐射光刻

INTRODUCTION TO LIGA TECHNOLOGY

LIU Gang TIAN Yang-Chao[†]

(NSRL , University of Science and Technology , Hefei 230026 , China)

YI Fu-Ting PENG Liang-Qiang

(BSRF ,Institute of Hight Energy Physics ,Chinese Academy of Sciences ,Beijing 100039 ,China)

Abstract After an introduction to the background of MEMS we review the principle of LIGA and related technology. The technical requirements of synchrotron radiation lithography are given. The R&D status of MEMS using LIGA is introduced.

Key words LIGA technology, MEMS, synchrotron radiation lithography

1 微电子机械系统的起源和特点

微电子机械系统的研究起源于 20 世纪 60 年代 发展起来的微电子集成技术.人们在发展微电子技 术,并使之获得巨大成功的过程中,研究开发了一系 列新的设计和制造原则、新技术和加工手段.当这些 新的设计和制造理论用于传统上并不属于电子学领 域里的问题,如:传感器、执行器、传动装置、流体机 械(泵、阀等),光学器件等,同样带来了革命性的变 革.通过硅工艺、大规模集成技术以及 20 世纪 80 年 代发展起来的各种微细加工技术(如 LIGA 技术,光 成形技术等),人们把信息传感、处理、机械执行机构 以及其他一些微器件,按照集成电路的制造原则,以 高密度、低成本的方式集成在一起,产生了微电子机 械系统这一概念.1987 年由美国加州大学伯克利分 校首次采用'硅工艺'制造出转子直径 60—120µm 的 微静电马达,标志着微电子机械系统(MEMS)的正式 诞生,当时就引起了国际学术界和产业界的高度重 视.

微电子机械一般泛指尺度在纳米至毫米范围的 装置.但是,微电子机械并不只是传统机械在尺度上 的缩小,与传统机械相比,除了在尺度上很小外,它 将是一种高度智能化、高度集成(机械、电子集成,机 械、电子、光学集成)的系统.在用材上,它将突破原 来的以钢铁为主,而采用金属、硅、GaAs、陶瓷以及纳 米相材料,具有较高的性能价格比,而且使用寿命 增长.

微电子机械具有军民两用性.由于微电子机械 具有尺度小、集成度高、功能灵活而强大等特点,它 和它所采用的超微细加工技术的辐射力,将深刻影 响国防科学技术和国民经济的发展.美、日、德、英等 国高度重视发展微电子机械,将其作为战略性的研

^{* 2001 - 12 - 28} 收到初稿 2002 - 02 - 05 修回

[†] 通讯联系人.E-mail 'ychtian@ustc.edu.cn

究领域之一.在军方的资助下,美国科学家完成了研 究报告《微型电子机械系统的军事应用》,指出它在 精确制导武器、灵巧武器、侦察通讯、破坏敌方指挥 系统及战斗力等方面的应用前景.美国宇航局已在 实施微型卫星(0.1—10kg)计划,并提出了纳米卫星 (<0.1kg)的设想.美国国家自然科学基金会预言: 微型机械将成为新兴的大规模产业,将能引起一场 新的工业革命.美、日等国的大型企业争先进入微型 机械领域,为21世纪占领世界市场作准备,微电子 机械的产值到2002年估计会达到34亿美元.

微电子机械系统的研究具有极大的学科交叉 性.就目前制造微电子机械元器件而言,涉及到设 计、材料、制造、测试、控制、集成、能源以及组装、连 接等技术.当然,元器件的微电子机械能够在一定领 域中得到应用.但是,只有当大量的元器件集成为微 电子机械系统时,才能在各领域中得到更为广泛的 应用和从事各种复杂的工作.微电子机械系统的研 究,除了需要上述单元技术外,还必须以材料科学、 物理学、化学、生物学、微光学、微电子学等学科作为 理论基础.同时,为了掌握微电子机械系统的机械、 力学、传热、摩擦等各方面的性质,我们还必须建立 微机械学、微动力学、微流体学、微摩擦学的理论基 础,发展全新的原理,用以解释微电子机械系统所出 现的新现象和新问题,而这些现象和问题往往用现 有的理论是无法解释和解决的.

微电子机械的研究还具有前沿性、带动性.微型 机械的发展有赖于并将大大促进纳米材料学、纳米 电子学、纳米机械学、纳米加工学、纳米测量学和纳 米生物学等高技术的发展.它将是 21 世纪最富于挑 战性的科学领域之一,将给医疗、工业、农业、通讯、 生物技术带来巨大影响.

总之,微型电子机械的研究开发,将使人类认识 和改造世界的能力有重大突破,对国防科学、人类经 济和社会生活产生巨大影响,它作为高新技术产业, 在 21 世纪将是各国竞相争夺的巨大市场.

2 微电子机械系统的加工方法

到目前为止,人们进行微电子机械系统加工时 主要是通过两种途径来发展的.一种是由大向小的 方向(即 Top-Down)发展,另一种是由小向大的方向 (即 Bottom-Up)发展.表1综述了这两种途径的加工 方法,表2对各种加工方法的优缺点进行了比较.

由表2可以看出,LIGA技术有着许多其他方法 无法比拟的优点.它可以制作高纵深比的复杂三维 图形,加工精度高,用材广泛(可以是金属、非金属、 陶瓷等),可以批量复制,成本低,因此受到许多发达 国家的重视.

表1 微电子机械系统加工方法

加工方法				
Top-Down Botttom-Up				
光成型技术	IC工艺	分子组装		
精密机械加工	LIGA 技术	单原子操作		
电化学加工	束流加工			

表 2 微电子机械系统加工方法性能比较

方法	工艺概述	主要特点
IC工艺	光刻、刻蚀等相结合的技术	平面工艺、尺寸小、精度高、一次可制作大量组件、需掩模
LIGA	X 射线光刻、电铸、塑铸	高纵深比的三维图形、尺寸小、精度高、用材广、用模具批量复制 "需掩模.
束流 激光 加工	用激光、电子或离子束直接加工(刻蚀)	无需掩模、可制作出三维图形
光成形	用激光局部聚合树脂	可制作任何形状的三维图形 ,尺寸较大、精度相对较低
精加工	基于传统的机械加工	可制作任何三维图形 但小型化比较困难
其他方法	电化学、电加工、STM	

3 LIGA 技术原理

3.1 固定图形结构的制作原理

LIGA 技术(德文缩写:深度 X 射线光刻、电铸和 塑铸)包括三个基本过程,即深度 X 射线光刻、电铸 和塑铸.图1是 LIGA 技术的基本原理图¹⁻⁷¹.

深度 X 射线光刻是利用同步辐射 X 射线光刻, 将掩模图形复制在几十或几百微米厚的光刻胶上, 刻蚀出大高宽比、精度为亚微米的光刻胶图形,高宽 比一般大于100.

电铸成形是将金属沉积在光刻胶图形的空隙 里,直至金属填满整个光刻胶图形空隙.

塑铸复制是向电铸成形的金属模腔填入塑料, 然后脱模得到塑料模具。

经过以上三个工艺过程后,就制出一个塑料模 具,利用塑料模具可以大量复制金属或非金属,如陶 瓷)材料的微结构元件.这三个工艺过程又可以相互

31卷(2002年)11期

独立 根据产品用材的需要 ,各工艺过程的产品也可 以作为最终产品使用。

3.2 活动结构制作原理

除了采用分别制作各自活动的部件,然后组装 为整机的方法外,可以在上述的LIGA工艺过程中 加入所谓的牺牲层(sacrificial layer)技术,来制造部 分或全部活动部件,其制作原理图见图 2^[8—10].牺牲 层技术是在制作较大高宽比的图形之前,在衬底上 沉积一层几微米厚的牺牲层材料,然后用光刻和湿 法腐蚀得到活动部件的衬底图形,接下来的工艺和 制作固定图形的LIGA工艺一样,只不过这时应调 整 X 射线掩模的活动部件图形,使其对准牺牲层上 活动部件衬底图形.在图形制作完成之后,再将牺牲 层腐蚀除去,就能够得到完全或部分活动的部件.牺 牲层技术的加入,大大拓展了LIGA技术的应用领 域.这一技术在传感器^[9—12]和微电机^[5,13]等器件制 作方面有其优越性,特别是它能够较容易地制作出 一部分固定而另一部分活动的器件(加速度传感

器).

3.3 复杂的三维结构的制作原理

LIGA 技术制作的图形具有侧面垂直性和平行 性均较好的特点,但一般只能得到具有相同纵向高 度的准三维图形.如果对上述的 LIGA 工艺进行修 改 就能够制作出不同高度尺寸或侧面倾斜的复杂 三维图形,使之满足实际需要.

一般地,可以采用两种方法来完成复杂的三维 微结构的制作,一种方法是使用普通的掩模,采用特 殊的曝光工艺来完成三维微结构的制作,在制作不 同高度的图形时,可以采用多次曝光的方法,第一次 制作出第一层图形 电铸得出金属图形后 再涂第二 层光刻胶 通过对准后 曝光得出第二层图形 再电 铸得出第二层金属图形 ,图 3(a)为两层金属结构. 在 LIGA 工艺过程中,通常保持同步辐射光和光刻 胶垂直 因此得到侧壁垂直的图形,只要改变同步辐 射光和光刻胶表面的夹角 就能够得到侧壁倾斜的 图形结构,以满足实际需要.图 3(b)是两次倾斜曝 光的结构,同时旋转样品而刻蚀出侧壁倾斜的图形, 甚至制作出更为复杂的图形 14,15 (见图 4), 还可以 采用固定掩模,平动或转动样品的方法制作出复杂 的螺旋体[16].另一种方法就是使用特殊形状的掩模 来完成复杂三维微结构的制作[17].特殊掩模图形的 设计是以投影原理为依据的,当同步辐射与样品的 夹角变化或样品旋转时 掩模在光刻胶上的投影也 随之改变,要得到复杂的三维微结构,可以通过所需 的微结构图形反过来设计掩模图形 得到形状特殊 的掩模,改变同步辐射与样品的夹角,同时旋转样 品 利用计算机精确控制夹角的变化以及特定夹角

图 3 简单三维结构 (a)两层微结构 (b)顺斜微结构

图 2 牺牲层技术的原理图

图 4 复杂三维微结构

下所需的曝光剂量,通过一次曝光就可以得到复杂的三维微结构。

制作复杂三维图形时,要求 X 射线掩模的对准 精度高,同时样品台应有倾斜和旋转等功能.

4 技术要求

利用 LIGA 技术进行 MEMS 器件的制作,首先需要进行深度 X 射线光刻,这也是得到高精度、大高宽比结构的首要保证.这里主要介绍深度 X 射线光刻的一些技术要求.

通常,曝光得到的光刻胶图形质量依赖于 X 射 线掩模图形精度、辐射过程的投影精度和光刻胶的 物理、化学性质等因素,所以为了保证图形的质量, 对掩模、光源都有一定的要求^{18]}.

对于 X 射线掩模,掩模衬底需用原子序数较小 的轻元素制作,而且应有比较好的耐辐照能力、不易 变形和支撑基片粘结牢固等性质.同时,为了实现多 次曝光,掩模衬底应该具有较高的可见光透过率.表 3 归纳了 LIGA 技术对掩模衬底和吸体体的要求.表 4 对几种能够用于 LIGA 掩模的衬底材料的性质进 行了比较.由表 4 可以看出,Be、金刚石和石墨是比 较理想的制作掩模衬底的材料.但由于 Be 的毒性较 大,所以一般不使用 Be;而金刚石的表面粗糙度很 难满足要求,在近阶段也难于实用;石墨的可见光透 过率虽然较差,但其他性能较好,目前正处于研究阶 段¹⁹¹现阶段实用较多的是 Si₃N₄、SiC 和聚酰亚胺 等.

表 3 LIGA 技术对掩模衬底和吸收体的要求

掩	模衬底	掩模吸收体		
X 射线透过率	> 50% (0.6-1.0nm)	对比度	> 100(对 PMMA 而言)	
表面粗糙度	$r_{\rm a} < 50 {\rm nm}$	同府	1—2µm(中间掩模)	
平整度	$< \pm 2\mu m$	序反	10—20µm(工作掩模)	
均匀性	< ±5%	内应力	< 20MPa	
杨氏模量	> 100GPa			
热膨胀系数	较小 ,与支撑环一致			
化学稳定性	不易氧化			

表 4 各种可用于掩模衬底材料的性能比较

性质	Ве	金刚石	SiC	Si	石墨	Ti
X射线透过率	+ +	+	0	-	+	-
杨氏模量	+	+ +	+	0	+	0
可见光透过率		+ +	+	0		
表面粗糙度	+	-	+ +	+ +	+	+
化学稳定性	0	+ +	+ +	+ +	+ +	0
背散射电子	+ +	+	0	0	+	-
无毒性		+ +	+ +	+ +	+ +	+ +

注:++:优良;+:较好;>:一般;--较差;--:非常差

掩模吸收体应采用原子系数较大的重元素制 作.表5列出了可以用于制作掩模吸收体的材料并 对它们的性质进行了比较.可以看出,Au,Ta,W等 都是制作掩模吸收体的良好材料,现阶段使用较广 的是金.根据不同胶厚和不同的使用波长,其吸收体 厚度要求为15—20μm.制作如此厚的吸收体掩模 时,一般采用中间掩模(吸收体为1—2μm),通过软 X 射线光刻复制而成.

表5 章	J用于掩模吸收体的几种材料的各种I	性能比较
------	-------------------	------

性能		Au	W	Та	Pt
X 射线吸收系数	X 射线吸收系数		+ +	+	+ +
	Be	+ +	-	-	+
与衬底热膨胀	SiC	-	+	+	0
系数比较	金刚石		+ +	+	-
	Ti	+		-	+ +
吸收体图形	RIE		+ +	+ +	
制作	电镀	+ +			

注:++:/优良;+ 较好;>:一般;- 较差;---:非常差

31卷(2002年)11期

关于光源,波长较长的 X 射线穿透能力弱,波 长较短的 X 射线穿透能力强,而要刻蚀的光刻胶厚 度在几十或几百微米,甚至上千微米,所以刻蚀时应 使用波长较短的 X 射线.当光刻胶 PMMA 厚度大于 1000µm 时,X 射线的波长应小于 0.2nm.由图 5 可以 看出,光刻胶 PMMA 厚度为 500µm 时,利用波长为 0.2—0.5nm 的 X 射线,能够刻蚀出精度较高的图 形,同时,要想得到较好的光刻胶图形,光刻胶上下

图 5 X 射线衍射和光电子效应对图形精度的影响

表面的曝光剂量之比为 $D_s/D_d < 6$.最理想的深度同步辐射光刻波长为 0.2nm.

5 LIGA 技术研究现状

LIGA 技术起源于德国,在德国发展得最为成 熟,水平最高,已在实验室里研制出多种微结构元件 或微机械,有些已经商业化.美国以及一些欧盟国家 也有较高的研究和制造水平.表6列出了几种目前 使用 LIGA 技术制作的微结构^[20-23].

中国科学院高能物理研究所、中国科学技术大 学^[24]、中国科学院长春光学精密机械研究所进行了 LIGA 技术的深度光刻、电铸等工艺的研究工作,制 作出多种光刻胶和金属的微结构,如加速度传感器、 微马达、微流量计、微夹钳、光纤夹、波带片等.中国 科学技术大学和中国科学院高能物理研究所还对 LIGA 技术进行了拓展,分别开发出制作自润滑微电 子机械的新方法^[25]和上牺牲层技术.

表6 LIC	<u> </u>	■的微结构
--------	----------	-------

器件类别	器件名称	实验室	产品情况		
	静电马达	FZK ,Germany	实验室阶段		
执行器	电磁马达	Uni. of Wisconsin ,USA IMM ,Germany	实验室阶段		
	光谱仪	FZK ,Germany	已商业应用		
微光学元件	光纤夹	IMM ,Germany	已商业应用		
	光开关、分束器、三棱镜、柱面镜	FZK ,Germany	实验室阶段		
流体器件	微泵 微反应器	FZK ,Germany	实验室阶段		
其他	微飞机	IMM ,Germany	实验室阶段		

国内可用于深度 X 射线光刻的装置有两个:中 国科学院高能物理研究所 LIGA 光束线实验站已建 成并运行,其峰值波长分布在 0.04—0.4nm,已分别 获得了 1000µm 厚的和高宽比为 44 的光刻胶结构; 中国科学技术大学 LIGA 光束线实验站正在建设 中 其峰值波长分布在 0.2—0.7nm,在初步的调试 过程中 利用高精度、可旋转的曝光机制作了一些复 杂三维微结构.相信随着 LIGA 线站建设的完成和 LIGA 技术的发展,一定可以实现高精度、大高宽比 的复杂三维微结构的制作,拓展 MEMS 制造的空间.

参考文献

- [1] Becker E W ,Ehrfeld E et al. Microelectroc. Eng. ,1986 A 35
- [2] Ronger A , Echert J , Muchemyer D et al. J. Micromech. Microeng. , 1992, 2:133
- [3] Ehrfeld W, Bley P, Gotz F et al. J. Vac. Sci. Technol. ,1988, B6 (1):178
- [4] Ehrfeld W Munchmyer. Nucl. Instrum. and Method in Phys. Res., 1991, A303 523
- [5] Leher H ,Ehrfeld W. In Proc. of Europen Symposium on Frontier in Science and Technology with Synchrotron Radiation. France : Aixen-Provence. April 5-8 ,1994
- [6] Muchmeyer D JLangen J. Rev. Sci. Instrum. 1992 63 713
- [7] Lehr H , Ehrfeld W , Schmidt M et al. J. Micromech. Microeng. , 1992 ,2 229
- [8] Kowang B ,Bacher W ,Bley P et al. In :Proc. of Micromech. Europen. Germany : Berlin. Nov. 26 27 ,1990

- [9] Burbaum C ,Mohr J ,Bley P. Sensor and Actuators ,1991 ,A25 27: 559
- [10] Mohr J, Burbaum C et al. Proc. of 1st Int. Conf. on Microelectromechanical Systems. Germany 'Berlin. Sept. 10 – 13, 1990
- [11] Bley P ,Gotter J ,Harmening M et al. In 2nd Int. Conf. Micro. Electro. Opt. Mech. Systems and Components. Germany 'Berlin. Oct. 29—Nov. 1,1991
- [12] Rogner A , Ehrfeld W , Munchmeyer D et al. J. Micromech. Microeng., 1991, 1:167
- [13] Guckel H. Nucl. Instrum. and Mech. in Phys. Res. ,1991 ,B79 247
- [14] Christophe M, Yohannes M D, Rogers J et al. J. Microelectromechanical Systems ,1997 & 4) 329
- [15] Ehrfeld W Schmidt A. J. Vac. Sci. Technol. ,1998 ,B16 3526
- [16] Feinerman A D. J. Microelectromechanical Systems ,1996 ,5(4): 250
- [17] Ramotowski M R "Johnson ED. SRN ,1999 ,12(5) 24
- [18] Tolfree D W L. Rep. Prog. Phys. ,1998 61 313
- [19] Philip Coane , Robert Giasolli. J. Vac. Sci. Technol. ,1998 ,B16: 3618
- [20] Ehrfeld W ,Lehr H. Radiat . Phys. Chem. ,1995 A5(3) 349
- [21] Brenner K H ,Kufner M ,Kufner S *et al* . Appl. Optics ,1993 ,32 : 6464
- [22] Muller A ,Gottenrt J ,Mohr J. J. Micromech. Microeng. ,1993. 3: 158
- [23] Bely P ,Interdisciplinary Sci. Rev. ,1993 ,18(3) 267
- [24] 田扬超.物理,1996,25:106[Tian Y C. Wuli(Physics),1996, 25:100(in Chinese)]
- [25] Tian Y C ,Liu G. SPIE ,1998 ,3512 22