LaFe_{11.2}Co_{0.7}Si_{1.1}合金在室温区的巨大磁熵变^{*}

胡凤霞^{1,2} 沈保根¹ 孙继荣¹ 王光军¹ 成昭华¹

(1 中国科学院物理研究所 中国科学院凝聚态物理中心 磁学国家重点实验室 北京 100080)(2 首都师范大学物理系 北京 100037)

摘 要 在具有立方 $NaZn_{13}$ 型结构的稀土铁基化合物 $LaFe_{11,2}Co_{0,7}Si_{1,1}$ 中发现室温区的巨大磁熵变,磁熵变的峰 值位于居里温度 $T_c = 274K$ 处 5T 外磁场下达到 ~ 20.3J/kg K 约为相同的温区下金属 Gd 的 2 倍. $LaFe_{11,2}Co_{0,7}Si_{1,1}$ 合 金中强烈的磁弹性耦合,导致晶格在居里温度处出现巨大负膨胀,这是其巨大磁熵变的来源. 关键词 $NaZn_{13}$ 型金属间化合物,晶格巨大负膨胀,磁熵变

VERY LARGE MAGNETIC ENTROPY CHANGE NEAR ROOM TEMPERATURE IN LaFe_{11.2}Co_{0.7}Si_{1.1}

HU Feng-Xia^{1 2} SHEN Bao-Gen¹ SUN Ji-Rong¹ WANG Guang-Jun¹ CHENG Zhao-Hua¹

(1 State Key Laboratory of Magnetism ,Institute of Physics & Center of Condensed Matter Physics ,Chinese Academy of Sciences ,Beijing 100080 ,China)
(2 Department of Physics ,Capital Normal University ,Beijing 100037 ,China)

Abstract Very large magnetic entropy change has been observed in the Fe-based cubic NaZn₁₃-type compound LaFe_{11.2} Co_{0.7}Si_{1.1} near the Curie temperature $T_{\rm C}$ of 274K. The value of this change is ~ 20.3J/kg K under a magnetic field of 5T at $T_{\rm C} = 274$ K, which markedly exceeds that of pure Gd by a factor of 2 in the corresponding temperature range. The strong structural and magnetic interplay in the compounds, characterized by the drastic lattice contraction at $T_{\rm C}$, is presumably responsible for this great entropy change.

Key words NaZn₁₃-type intermetallic compounds , large negative thermal expansion , magnetic entropy change

由于室温磁制冷技术的广泛应用,寻找室温区 的磁制冷工质具有特殊的意义,为了获得大的磁卡 效应 人们研究了各种各样铁磁性材料的磁熵变 很 长时间以来,单质稀土金属 Gd 被认为是唯一可被 用于室温磁制冷应用的材料.近几年来、磁制冷材料 的研究获得了突破性的进展.美国 Iowa 大学 Ames 实验室报道的 Gd₅Si₂Ge₂ 合金^[1]在室温区具有异常 巨大的磁卡效应,大幅度地超过 Gd. 最近的研究表 明^[2-5] 低 Si 含量的 LaFe_{13-x}Si_x 化合物中存在强烈 的磁弹性耦合 表现为居里温度处的巨大晶格负膨 胀 并且在居里温度以上观察到磁场诱发的巡游电 子变磁转变,磁化强度和晶格参数在居里温度处同 时出现大幅度改变会强烈地影响磁熵变 由于 Ia和 Fe 元素之间正的形成热 ,LaFe13 不存在 ,而 LaCo13存 在 我们预期 Co 的添加可使 LaFe_{13-x} Si_x 中的 Si 含 量进一步降低,同时提高居里温度,因而,我们制备 了掺 Co 的具有低 Si 含量的化合物 LaFe₁₁, Co₀₇Si₁₁, 发现其在室温附近具有异常巨大的磁卡效应。

LaFe_{11.2}Co_{0.7}Si_{1.1}合金是在高纯氩气氛保护下经 电弧熔炼而成的,使用的原材料 La, Fe, Co, Si 的纯 度皆为 99.9%.熔炼后的样品在 1325K 下退火 30 天.粉末 X 射线衍射测量的结果表明,LaFe_{11.2}Co_{0.7} Si_{1.1}样品为单相立方 NaZn₁₃型结构.

用 SQUID 磁强计测量了样品在 100 Oe 磁场下 升温和降温的热磁曲线,发现居里温度处的磁相变 在升温和降温过程中几乎没有热滞后出现.由热磁 曲线得到样品的居里温度为 274K.

图 1(a)为升场过程中测量的不同温度下的等 温磁化曲线.图 1(b)示出了在典型温度下测量的升 场和降场过程的磁化曲线,发现磁场循环引起的磁 滞后很小,这对于实际的磁制冷应用非常有益.图 2

^{*} 国家自然科学基金(批准号:174094)资助项目;国家重点基础研 究发展规划项目(批准号:G1998061303);北京市自然科学基金 (批准号:1012002)资助项目 2001-08-11收到初稿2001-10-09修回

为根据图 1 数据利用麦克斯韦关系计算得到的 5T 外磁场下的磁熵变温度曲线.得到磁熵变的峰值为 ~20.3 J/kg K.同时,我们也计算了在 1T,2T,3T,4T 外磁场下的最大磁熵变值,它们分别为7.2,12.1, 15.5 ,18.2J/kg K.在 LaFe_{11.2} Co_{0.7} Si_{1.1} 样品中 ,我们还 观察到随着外磁场的增加磁熵变峰出现了不对称的 展宽 这是由于居里温度以上外磁场引起的顺磁态 至铁磁态的巡游电子变磁转变所致[4],为了比较,我 们也测量了 Gd 的磁熵变,结果与前人报道的一致 (见图 2). 同时图 2 也示出了 5T 外场下 Gd₂Si₂Ge₂ 的 磁熵变值^[1]. 由图 2 可见, LaFe_{11.2} Co_{0.7} Si_{1.1} 的磁熵变 约是 Gd 的 2 倍,并且略高于 Gd, Si, Ge, 的磁熵变.如 此异常巨大的磁熵变在 3d 合金中除了 FeBh 外尚未 观察到^[6].然而,由于 FeBh 合金的磁卡效应对磁场 的不可逆性(磁卡效应在一个磁场循环后消失)而不 宜作为磁制冷工质^[7].

图 1 LaFe_{11.2}Co_{0.7}Si_{1.1}合金在不同温度下的等温磁化曲线 (a)升场测量的磁化曲线(b)几个典型温度下测量的升场和 降场过程的磁化曲线

不同温度下的粉末 X 射线衍射(XRD)测量结果 表明,LaFe_{11.2}Co_{0.7}Si_{1.1}的立方对称结构不随磁性状态 的改变而改变,然而晶格参数在居里温度处出现大 幅度的改变.图 3 为根据 XRD 图谱计算得到的晶格 参数对温度的依赖关系,可见居里温度处晶格的巨 大负膨胀. T_c 附近铁磁态的晶格参数比顺磁态的大 ~4.39‰.作为比较,图 3 的插图同时示出了 LaFe_{11.2} Co_{0.7}Si_{1.1}和 Gd 的相对体积变化 $|\Delta V/V|$ 对温度的依 赖关系.我们发现 T_c 附近 LaFe_{11.2}Co_{0.7}Si_{1.1}的体积变 化($|\Delta V/V|$ ~1.3%)超过 Gd 的 15 倍.

图 3 LaFe_{11.2}Co_{0.7}Si_{1.1}合金的晶格参数对温度的依赖关系 (插图为 LaFe_{11.2}Co_{0.7}Si_{1.1}和 Gd 的相对体积变化 |△V/V| 对温度的依赖关系)

LaFe_{11.2}Co_{0.7}Si_{1.1}在室温区异常巨大的磁熵变是 由于合金中强烈的磁弹性耦合引起的晶格巨大负膨 胀所致。

参考文献

- [1] Pecharsky V K ,Gschneidner Jr K A. Phys. Rev. Lett. ,1997 ,78: 4494
- [2] Hu F X Shen B G Sun J R et al. J. Phys. 'Condens. Matter 2000, 12 :L691
- [3] Hu F X Shen B G Sun J R et al. Chinese Physics 2000 9 550
- [4] Hu F X ,Shen B G ,Sun J R et al. Appl. Phys. Lett. ,2001 ,78: 3675
- $\left[\begin{array}{c}5\end{array}\right]$ Hu F X , Shen B G , Sun J R et al , Phys. Rev. B 2001 , 64 012409
- [6] Annaorazov M P ,Nikitin S A ,Tyurin A L et al . J. Appl. Phys. , 1996 ,79 :1689
- [7] Pecharsky V K, Gschneidner K A. Appl. Phys. Lett. ,1997,70: 3299