硅基光电集成器件研究进展*

孙 飞 余金中*

(中国科学院半导体研究所集成光电子国家重点实验室 北京 100083)

摘 要 随着器件结构与制作工艺的不断创新与完善, 硅基发光器件已经可以实现室温下的有效工作,外量子 效率可达到 0.1%, 低功耗的硅基高速调制器件的调制速率达到 1GHz 以上;而硅基光探测器对 1300nm 与 1550nm 波长的探测响应度也已分别达到了 0.16mA/W 和 0.08mA/W. 文章对硅基光电器件的研究进展情况进行了概述, 并着重对几种器件的结构及工作原理进行了分析.

关键词 光电集成 发光器件 光调制器 光探测器

Progress of silicon based optoelectronic integrated devices

SUN Fei YU Jin-Zhong[†]

(National Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China)

Abstract With the successive progress and improvements in device design and fabrication, silicon based light-emitting devices can now work efficiently at room temperature, with an external quantum efficiency of 0.1%. Silicon based modulators with low power consumption can attain a modulation speed as high as 1GHz, and newly reported silicon based optical detectors can detect wavelengths of 1300nm and 1550nm with a responsivity of 0.16mA/W and 0.08mA/W, respectively. The latest achievements in silicon based optoelectronic integrated devices are reviewed, and their structures and principle of operation are explained and analyzed. **Keywords** optoelectronic integration, light-emitting device, optical modulator, photodetector

1 引言

硅材料在微电子集成领域有着不可替代的地 位,现代微电子工艺的飞速发展都是以硅材料为基 础的.然而在光电集成领域,硅材料本身却不是很适 合用来制作光电器件.首先硅不是一种直接带隙材 料,因而不可能制成高效的激光器、LED(发光二极 管)等发光器件,这是由其本身的晶体结构决定的. 另外硅不具备线性电光效应等特性,不能用外加电 场的方式改变材料的折射率,因此也不适合用来制 作光开关、光调制器等信号处理器件.正是由于硅材 料的这些先天缺陷,人们在制作光电集成器件时,把 更多的目光投向了 III – V 族化合物、铌酸锂以及有 机聚合物等光电性能更为优越的材料. 但是由于硅 材料与成熟的微电子工艺的高度兼容性,硅基光电 集成器件的研究也一直方兴未艾 ,一些性能优越的 器件也不断的被设计、制作出来. 本文就硅基光电集 成器件的最新研究进展作以简单的概述.

2 发光器件

由于硅为间接带隙半导体,在载流子的复合过 程中非辐射复合占绝对优势,因此单晶硅本身不能 制成有效的发光器件.然而通过掺杂或引入应力的 方法,可以改变材料的能带结构,从而为硅基发光器 件提供了实现的可能.目前对硅基发光器件的研究

 ^{*} 国家重点基础研究发展计划(批准号:C2000-03-66),中国高技术研究发展计划(批准号:2002AA312060),国家自然科学基金(批准号:60336010)资助项目
2004-05-17收到初稿:2004-09-09修回

[†] 通讯联系人. E-mail jzyu@ red. semi. ac. cn

主要集中在可见光和红外两个领域. 在可见光领域, 一般通过采用多孔硅、Si/SiO2 超晶格、纳米硅等结 构来实现硅的能带结构的改善,而在红外领域,掺铒 硅、GeSi、FeSi2 等材料受到较多的关注^[12]. 然而从 工艺实现的角度来讲,这些材料的制备或多或少都 不能与现有的成熟微电子工艺兼容,因此为光电器 件的单片集成带来了一定的困难. 而下面介绍的两 种硅基发光器件利用标准的微电子工艺制作,较好 的解决了工艺兼容性问题,从而使得器件的单片集 成成为可能.

2.1 纳米结构受激发射二极管

由 Chen 等人设计制作的硅基发光二极管^[3], 实现了硅的受激发射,大大提高了发光效率,具体制 作方法为:将SiO,纳米微粒混入 B 旋涂掺杂剂 (SOD)中 然后将此混合剂沉积在 n 型硅片表面 进 行高温扩散. 在高温条件下 ,SiO₂ 微粒的存在一方 面对该处 B 的扩散起一定的阻碍作用,另一方面加 速了微粒周围区域掺杂剂中硅酸硼的分解(产物为 B与SiO₂),从而使得扩散得以较快的进行以形成 p⁺掺杂区. 扩散结束后再用 HF 漂掉表面的 SiO, (包括原有的纳米微粒和扩散中硅酸硼的分解产 物)就形成了图1所示的表面纳米结构.图中的突 起处对应扩散进行较快的 p⁺掺杂区 而凹陷处对应 扩散过程中 SiO, 纳米微粒所处的位置. 这样在扩散 形成 pn 结的同时在基片的表面形成了类似量子点 的突起单元 改善了材料的能带结构 从而使硅的受 激发射成为可能. 文献中给出的平面 pn 结的内量子 效率可达到 0.1%, 而采用脊型波导结构制作的器 件的外量子效率达到了 0.013% 相对于普通 LED, 发光效率有了显著提高(图2). 由图2可以清楚的 观察到硅的受激发射现象,在阈值电流(315mA)以 下 这种器件的发光效率与普通 LED 类似,而当注 入电流超过阈值后,发光效率提高30倍以上,说明 此时硅的受激发射开始起作用,并对器件发光特性 的显著改善做出了重大贡献.

2.2 位错结构 LED

Ng 等人也提出了一种与现有微电子工艺完全 兼容的发光器件结构^[4],可以实现在室温下的稳定 工作.器件结构如图 3 所示,在 n 型的单晶硅衬底上 通过离子注入的方式掺入 B,形成 pn 结,同时 B 的 掺入在靠近 pn 结的局部区域引入了一定的位错,而 位错的存在使得材料内部产生了局部的应力,这些 应力导致硅的局部能带结构的改善,从而可以实现 室温下的有效稳定的发光,器件的外量子效率可达

图 1 用 SOD 与 SiO, 混合剂进行沉积扩散后的硅片表面形貌

图 2 改进扩散工艺的器件发光特性与传统器件发光特性

10⁻³左右.

3 光探测器件

由于硅为间接带隙材料且禁带宽度较大,因此 对于光通讯中较常用的1310nm 和1550nm 波长的 光波,不能进行吸收探测,而对于波长更短的光波 (如820nm),也由于其吸收效率不高而使得器件尺 寸过长.因此要想扩大硅基探测器件的适用波长范

· 51 ·

围,并提高其探测效率,就必须对硅材料进行能带结 构的改造.

Hsu 等人提出了一种基于 Ge 量子点和 MOS 隧 穿结构的新的硅基探测器设计[56].能带结构的改 善通过用 UHVCVD(超高真空化学气相沉积)生长 Ge 量子点的方法来实现. 如图 4 所示 .在单晶硅上 首先生长一层缓冲层,然后在缓冲上交替生长 Ge 量子点和硅间隔层以形成有源区 Ge 量子点的尺寸 由自组织生长过程中由于晶格失配而引入的应力的 大小决定,而量子点的位置可以通过纳米刻印 (nanoimprinting)⁷的方法来控制. 生长数个周期的 Ge 量子点以后 在 Si 盖帽层上生长厚度仅为 1.5 nm 的氧化层以构成 MOS 结构的栅氧.氧化层用低温的 LPD(液相沉积)的方法制成,以避免高温对已生成 的 Ge 点的影响. 生长后材料的能带结构如图 5 所 示 在 Ge 量子点处禁带宽度明显变窄 从而为长波 长光波的吸收探测提供了可能. 由于 MOS 结构中的 氧化层仅为 1.5nm 因此根据隧穿效应 载流子可以 较容易的穿过氧化层而到达电极 形成电流 当在栅 极上加正压时,栅下的 p-Si 耗尽,这时的栅极电流 大小就由光生载流子的产生速率决定,随光强的增 大而增大(图6)从而实现了探测功能.

图 4 Ge 量子点光探测器中有源区构成

由于采用 MOS 隧穿结构来代替传统的 p-i-n 结构进行探测,因此器件的暗电流密度大为减小,室 温下仅为 0.06mA/cm²(传统 p-i-n 探测器的暗电

图6 Ge 量子点光探测器 I-V 曲线

流密度为 20mA/cm² 左右). 当 Ge 量子点结构的周 期数为5 时,探测器对 820nm、1300nm、1550nm 三个 波长的响应度分别为 130 mA/W、0.16 mA/W 和 0.08 mA/W 通过增大 Ge 量子点结构的周期数,增 大有源区的体积,响应度可以得到进一步提高.

4 光导波器件

光导波器件包括光开关、光调制器、光功率分配 器、波分复用器等等,这些器件在整个光通讯网络中 起着十分重要的作用,被广泛应用在交叉互联、波分 复用、信号处理等场合.而其中光开关与调制器更是 一些通讯系统的核心构成组件.然而由于硅材料不 具备线性光电效应(Pockels 效应),一般硅基光开关 与调制器件应用到的是硅的热光效应和等离子色散 效应.硅的热光效应指的是其折射率的大小随材料 温度高低的变化,而等离子色散效应是指硅的折射 率及其对光波的吸收系数随材料中载流子浓度的变 化而变化.当利用热光效应对光场进行调制时,由于 牵涉到热的扩散过程,器件的调制速率较低,调制频率很难达到1MHz以上,因此高速调制器件中一般都运用硅的等离子色散效应进行工作.常用的调制结构为 M-Z 干涉型及定向耦合型,但一些新的结构也不断的被设计出来.

4.1 电荷感应 MOS 光调制器

Nature 杂志最近报道了 Intel 公司研制的一种 硅基的高速光调制器^[8]. 其基本结构仍为 M-Z 干涉 器,仍然利用硅的等离子色散效应。但由于其相移区 结构的改善,使得整个器件的调制速率大为提高,可 达到1GHz以上.相移区的基本结构如图7所示.一 般的电光调制器件运用 p-i-n 结构进行载流子的 注入,从而改变材料的折射率,而在 Intel 的这种结 构中,采用了类似 MOS 结构,在 SOI 基片上首先淀 积一层很薄的栅极氧化层(12nm)然后在上面进行 外延生长 p 型非晶硅,再经高温退火后形成多晶硅, 这层多晶硅与 SOI 基片上的硅层共同构成了脊型波 导结构.当外加电压进行调制时,由于栅氧的存在, 器件中不会形成电流 在电场的作用下感应电荷聚 集在栅氧的两边,使得这一区域的载流子浓度增大, 折射率变小 从而实现对光场的相位调制 通过采用 MOS 结构,使器件的调制方式从一般的电流调制转 变为电压调制 载流子的主要运动方式为电场作用 下的漂移运动而非扩散运动 ,另外载流子浓度变化 的区域与光场分布区域基本重合 ,二者交叠积分比 较大,因而可以实现高效快速的调制.

图 7 Intel 公司电荷感应 MOS 光开关结构示意图

4.2 BMFET 型光调制器

图 8 是一种基于光场吸收的调制结构,由 Sciuto 等人给出^[9].这种结构在传统 p – i – n 结构 的基础上加了一个漏极,形成了 BMFET(双极模式 场效应管)结构.其基本原理在于通过注入载流子 来增大波导对光场的吸收,当载流子的分布与光场 分布的交叠状况改变时,波导对光场的吸收情况也 会相应改变.工作过程中当栅极电压一定时,通过改 变漏极、源极之间的电压 V_{Ds},可以改变载流子浓度 在器件中的分布状况,从而改变光场分布与波导吸 收系数分布的交叠情况,最终实现对光场的幅度调 制.这一器件是通过调节载流子的分布而不是载流 子的有无来实现调制,其调制速度不再受限于载流 子的寿命,而主要受限于偏压电场的变化速率,因此 可以获得较高的调制速率.

图 8 BMFET 调制结构工作原理示意图

4.3 DBR 型光调制器

Irace 等人将 DBR 结构与 p – i – n 结构结合起 来,提出了如图 9 所示的调制器^[10]. 其基本构成为 一个基于 SOI 的脊型波导,在波导的脊上刻出了周 期排列的条纹以形成布拉格光栅. 当一定波长的光 入射进波导时,光栅对光波的反射率随调制区材料 折射率的变化 Δ n_f 而变化(如图 10). 由图 10 可知, 当折射率 n_f 仅变化 0. 2 × 10⁻³ 时(图中 Δ n_f 从 0 变 化到 0. 2 × 10⁻³),反射率即可实现从最大到最小的 变化,这就为高速的开关调制器件的实现提供了可 能. 调制速率与图 10 中反射率随 Δ n_f 的变化斜率密 切相关,经计算分析可知,采用这一结构可以制成开 关速率高达 1. 4GHz 的高速调制器件.

图 9 DBR 型光调制器

4.4 F – **P** 腔型光调制器 在 Barrios 等人提出的器件结构^[11,12]中也用到

图 10 DBR 调制区折射率变化与反射率的关系

了 DBR(图 11),但是器件的工作原理却与上述的 DBR 光调制器的原理大相径庭. 在这一结构中,调 制区被制成了一个 F-P腔,而在调制区的两端均 排列有由数个周期的布拉格光栅构成的 DBR. 光栅 的周期与 F - P 腔的长度由入射光波的中心波长决 定,光波的中心波长在 F-P 腔中可产生谐振,而且 具有该波长的光波在光栅中的透射率最大. 未加调 制电压时,中心波长的光波在 F - P 腔中谐振,这样 虽然在调制区两端的 DBR 中的周期性不连续界面 处会产生一定的衰减,但由于在 F - P 腔中的干涉 相长,在输出端仍能得到一定的光强,而通过利用硅 的等离子色散效应进行调制时,调制区的折射率发 生改变,中心波长的光波不再满足 F - P 腔中的谐 振条件 这样光在经过许多个不连续界面的衰减之 后,在输出端得到的光强微弱到可以忽略不计的程 度. 而此时由于调制区折射率的改变,其他波长的光 却有可能在 F – P 腔中因产生谐振而干涉相长,但 由于两端 DBR 的波长选择功能,这个波长的光也不 能到达输出端. 这样就实现了对输入光波的调制. 在 DBR 结构中布拉格光栅的周期数可以显著影响整 个器件的性能,周期数越多,器件的调制深度越大 (DBR 的波长选择性越好),但器件的插入损耗越 大,光的透过率越小.因此实际设计过程中需要折中 考虑. 这一结构的最大优点在于,由于 F - P 腔的采 用,器件的长度可以大为缩短,功耗也大为降低.文 中给出的所设计的器件总长度仅 20μm,可实现对 1.55µm 波长的光波进行调制,调制深度为80%,光 波透过率为 86%(插入损耗为 0.65dB),而调制时 的直流功耗仅 25 uW.

图 11 F - P 腔型光调制器结构示意图

5 结束语

硅作为光电集成器件制作材料来说,虽然有一 些先天不足,但随着新的设计思路的不断提出,新的 工艺技术的不断进步,硅基的光电器件已经可以应 用于光电集成领域的各个方面,器件的各性能指标 已经具备了与其他材料的光电器件相竞争的能力. 另外由于硅基器件与现有成熟的微电子工艺的高度 兼容性,以及其低成本、高集成度等优点,该类器件 必将获得长足的发展和越来越广阔的应用.

参考文献

- [1] 陈维德,李秀琼.光电子技术与信息,2000,13(2):13[Optoelectronic Technology & Information,2000,13(2):13(in Chinese)]
- [2] Canham L T. Applied Physics Letters , 1990 57(10):1046
- [3] Chen M J , Yen J L , Li J Y et al. Applied Physics Letters , 2004 84(12):2163
- [4] Ng W L , Lourenco M A , Gwilliam R M et al. Nature , 2001 , 410 :192
- [5] Hsu B -C, Chang S T, Chen T -C et al. IEEE Electron Device Letters, 2003 24(5):318
- [6] Liu C W , Liu W T , Lee M H et al. IEEE Electron Device Letters , 2000 21(6):307
- [7] Kamins T I, Ohlberg D A A, Williams R S. Applied Physics Letters, 1999 74(12):1773
- [8] Liu A , Jones R , Liao L et al. Nature , 2004 427 :615
- [9] Sciuto A, Libertino S, Alessandria A et al. Journal of Lightwave Technology, 2003 21(1):228
- [10] Irace A, Breglio G, Cutolo A. Electronics Letters, 2003, 39 (2):232
- [11] Barrios C A , Almeida V R , Panepucci R R et al. IEEE Photonics Technology Letters , 2004 ,16(2):506
- [12] Barrios C A, Almeida V R, Lipson M. Journal of Lightwave Technology, 2003 21(4):1089