多孔硅薄层的正电子湮灭寿命研究*

「蒋中英¹² 黄红波¹ 徐 寒¹ 黄彦君¹ 夏元复^{1,†}

(1 南京大学物理系 南京 210093)(2 伊犁师范学院物理系 伊宁 835000)

摘 要 用阳极氧化法按不同腐蚀条件制备的多孔硅,其薄层厚度仅为几十纳米,远小于²² Na 源的正电子平均 射程.文章提出了一种用²² Na 的正电子测量体寿命谱并扣除基片贡献的方法,来确定多孔硅薄层的平均孔径. 关键词 正电子湮没,多孔硅,正电子素,阳极氧化法

Analysis of the porosity of porous silicon thin layers by positron annihilation lifetime spectroscopy

JIANG Zhong-Ying^{1 2} HUANG Hong-Bo¹ XU Han¹ HUANG Yan-Jun¹ XIA Yuan-Fu^{1,†} (1 Department of Physics, Nanjing University, Nanjing 210093, China)

(2 Department of Physics, Yili Normal College, Yining 835000, China)

Abstract A porous silicon thin layer was prepared by anodic oxidation under different corrosion conditionEmails. The layer thickness was a few tens of nanometers , which is much smaller than the average range of positrons from a 22 Na source. The mean pore volume and specific surface area in the samples were measured with 22 Na positron life spectroscopy , by measuring the bulk lifetime spectrum of porous silicon and then deducting the lifetime spectrum of the substrate.

Key words positron annihilation , porous silicon , ortho-positronium , anodic oxidation

多孔硅材料微观结构直接影响材料的物理特 性,因此研究多孔硅材料的微观结构显得十分重要. 由于多孔硅中的孔隙率的不同,它有可能呈现光致 发光效应^[12]或感湿现象^[3]等.而多孔硅的这些性 质及其广泛的应用前景已引起学者、产业界和商家 的极大兴趣.一种常用制备多孔硅材料的方法是将 单晶硅置于氢氟酸溶液中进行电化学腐蚀.通过控 制氢氟酸溶液浓度和电流密度,可实现控制多孔硅 的孔的尺寸及孔隙率的大小.本实验便是采用此方 法制备样品的.

用正电子湮灭技术(PAT)研究多孔材料有其独 特优点:正电子的功函数为负值,它倾向居于固体 表面或进入空穴,由于所形成的亚稳束缚态(正电 子素,记为 ο – Ps ρ – Ps 直径约0.11nm)很小,所以 即使是单原子空穴也可以进入并与其周围物质反 应,然后湮灭.e⁺的这种表面性使 PAT 成功地应用 于多孔介质的表面状态的研究中^[4].

 22 Na 发射的正电子能量的平均值为 0.15 MeV,

在单晶硅中的平均射程约 100μm,在多孔硅中,平 均射程视孔隙率不同而不同,达到几百微米,难以满 足在常规正电子湮灭寿命谱系统测量要求,不能保 证正电子全部在样品中湮灭(为了保证正电子湮灭 所反映的是射程末端材料结构信息,样品厚度必须 取经验公式计算射程的3—5倍,方能保证正电子不 会穿透样品),阳极氧化法制备的多孔硅层仅分布 在硅片表面上,其厚度为几十纳米,部分正电子透过 多孔硅层在基片中湮灭,普通的正电子湮灭寿命谱 测量结果受到干扰,给常规实验带来不便.

本文介绍了一种从腐蚀后的多孔硅片的寿命谱 结果中扣除腐蚀前的硅片的湮灭参数,求解多孔硅 薄层中正电子湮灭参数的修正方法,并通过该方法 和实验研究得到了多孔硅薄层孔隙率与氢氟酸浓度 及电流密度的关系.

† 通讯联系人. Email :Hsia@ nju. edu. cn

 ^{*} 国家自然科学基金(批准号:19835050)重点资助项目
 2004-08-10 收到初稿:2004-10-08 修回

1 原理及方法

由²²Na 放射源(其正电子最大动能为 545keV) 放出的正电子具有较高的动能,进入介质后,通过与 电子、原子或离子的非弹性碰撞损失能量,其动能降 到热能水平,然后以热运动速度扩散.此过程称为热 化阶段,所经历的时间仅为几个 ps(1ps = 10⁻¹²s). 热化后的正电子在材料中扩散,在扩散过程中与材 料中的电子发生湮灭,产生γ光子,由它将材料中 的信息带出来.这一扩散湮灭过程的持续时间因材 料不同而不同.正电子发生时刻作为起始信号,到发 出 0.511MeV 湮灭光子时刻作为终止信号,这一时 间间隔作为正电子寿命.热化后,正电子动能仅为 0.025eV,扩散距离很短,因此扩散距离并不影响正 电子的射程.正电子在介质中的射程主要由热化阶 段决定.对于²²Na 源,Paulin 已给出正电子射程与材 料密度的经验公式^{[41}]:

$$\frac{1}{R_{+}} = \frac{2.8 \times \rho \times Z^{0.15}}{\bar{E}^{1.19}} , \qquad (1)$$

其中 ρ 为材料密度(单位 :g/cm³), *E* 是²²Na 正电子 平均动能(单位 :MeV), R_+ 为正电子平均射程(单 位 :cm), *Z* 是材料的原子序数.

可以估算²²Na 正电子在硅材料中的平均射程为 103.9µm ,部分被多孔薄层吸收湮灭 ,另一部分则进 入硅基片中湮灭.

注入正电子在固体中的分布与其他带电粒子一 样,以指数分布曲线描述^[5],即:

$$N(r) = \left(\frac{N_0}{R_+}\right) e^{-r/R_+}$$
, (2)

式中r为从样品表面算起的深度. N(r)dr为r到 r+dr 薄层内的正电子数目. N_0 为正电子总数,其倒 数 R_+^{-1} 是材料对正电子的吸收系数.

设多孔硅层厚度为 d ,对(2)式积分得到正电子 在多孔硅层湮灭的份额为

$$\alpha = \int_0^{\infty} N(r) dr = N_0 (1 - e^{-d/R_+}). \quad (3)$$

在此我们对多孔硅样品的正电子湮灭谱采用三 态捕获模型函数法来拟合,而对单晶硅采用二态捕 获模型拟合.正电子在完整晶体中热化、扩散,与电 子相碰撞发生正负电子湮灭称自由态湮灭,一旦晶 体中出现缺陷(如空位、位错、位空洞)等,情况将会 发生变化.在完整的原子点阵中出现一个正电荷空 位,这种空位相应带有等效负电荷,而正电子带正 电,在空位处,正电子势能更低,正电子容易被空位

缺陷捕获,而后再湮灭,这就是正电子的捕获态湮 灭. 由于空位处电子密度较低 ,正电子空位捕获态湮 灭的寿命将变长. 正电子还可以与样品中的电子组 成一种亚稳定束缚态,它类似于氢原子而被称之为 正电子素(简称 o – Ps).正电子素的湮灭与正电子 自由态湮灭和正电子捕获态湮灭完全不同. 它的形 成和寿命与样品中的自由体积(可看成微空洞)的 大小和孔的数目有关. 微空洞数目越多 .o – Ps 形成 概率越大,形成的 o – Ps 数就越多 ;空洞越大 ,空洞 内电子密度愈低 $\rho - Ps$ 的寿命也就越长(一般 $\rho -$ Ps 的寿命大于 0.5 ns). 对于单晶硅,正电子在样品 中除了自由态湮灭外,只有一种缺陷(空位或空位 团)捕获态,因此对于它的正电子湮灭寿命谱采用 二态捕获模型来拟合. 其拟合结果为两种正电子态 寿命 τ₁, τ₂, 及其相应强度分别为 I₁, I₂, 对于多孔硅 谱 采用三态捕获模型函数法拟合的原因是在多孔 硅样品中存在三种湮灭方式^[5]:自由态湮灭、空位 或空位团等缺陷捕获湮灭和正电子素的拾取(pickoff)湮灭.

设样品的相关参数为 $I_1 \pi_1 I_2 \pi_2 I_3 \pi_3$. 多孔硅 层参数为 $I_1^{a} \pi_1^{a} I_2^{a} \pi_2^{a} I_3^{a} \pi_3^{a}$, 徒基片参数记为 $I_1^{b} \pi_1^{b} I_2^{b} \pi_2^{b} I_3^{b} \pi_3^{b}$,其中 I_i 是相应于寿命 τ_i 的 强度. 因为有 α 份额的正电子被多孔层吸收并湮 灭 ,则在基片吸收并湮灭的份额应为(1 – α). 于是 正电子入射到样品后, 任何时刻均有

$$\sum_{i=1}^{3} I_i \Gamma_i \exp(-\Gamma_i t) = \alpha \sum_{i=1}^{3} I_i^a \Gamma_i^a \exp(-\Gamma_i^a t) + (1-\alpha) \sum_{i=1}^{3} I_i^b \Gamma_i^b \exp(-\Gamma_i^b t), \quad (4)$$

对(4)式两边的 $t \downarrow 0$ 到 ∞ 积分,并注意到t = 0时 刻等式两边相等,容易得到

$$\begin{cases} \sum_{i=1}^{3} I_{i} = \alpha \sum_{i=1}^{3} I_{i}^{a} + (1 - \alpha) \sum_{i=1}^{3} I_{i}^{b}, \\ \sum_{i=1}^{3} I_{i} \Gamma_{i} = \alpha \sum_{i=1}^{3} I_{i}^{a} \Gamma_{i}^{a} + (1 - \alpha) \sum_{i=1}^{3} I_{i}^{b} \Gamma_{i}^{b}, \end{cases}$$
(5)

式中 $\Gamma_i = \tau_i^{-1}$ (5)式是(4)式成立的必然结果. 若认为

$$\begin{cases} I_i = \alpha I_i^a + (1 - \alpha) I_i^b \\ I_i \Gamma_i = \alpha \Gamma_i^a + (1 - \alpha) I_b^b \Gamma_i^b \end{cases}$$
(6)

成立 ,那么(4)式也必然成立.(6)式的物理意义是, 正电子湮灭参数在样品中的第 i 成分应是在多孔层 和基片中湮灭的对应成分的贡献总和. 计算得到 α , 再测定了 $I_i \sigma_i$ 和 $I_i^{b} \sigma_i^{b}$,利用(6)式便可求出一组 $I_i^{a} \tau_i^{a}$. 在正电子湮灭谱学参数测试中 ,人们最关心的 3 个参数是湮灭强度 I_i , 各成分平均寿命 τ_i 及样品 相关参数是否等于多孔硅层和硅基片的相应参数的 叠加结果.(6)式是在特定条件下推导出来的 ,只能 保证前两个参数满足要求 ,然而后一个参数只有当 $\tau_i^a = \tau_i^b = \tau_i$ 时才可能满足要求. 正电子湮灭寿命 谱参数的偏差 δ 为

$$\delta = \frac{\left\{\sum_{i=1}^{3} I_{i} \Gamma_{i} - \left[\alpha \sum_{i=1}^{3} I_{i}^{a} \tau_{i}^{a} + (1 - \alpha)\right] \sum_{i=1}^{3} I_{i}^{b} \tau_{i}^{b}\right\}}{\sum_{i=1}^{3} I_{i} \Gamma_{i}}.$$

(7)

如果 δ 过大 (6)式的关系不再成立,此方法不能使用.因此,应用²² Na 正电子固体薄层寿命谱学技术 必须注意以下两点:

(1)该技术是利用间接法测量固体薄层的正电子 湮灭参数,首先必须对基片(作为比较样品)进行测量. 为此,比较样品必须和实验基片一致,包括尺寸、物质 种类、机械加工、热处理、化学处理及测试条件等.

(2)以上讨论忽略了源效应的影响及对 α 的计 算误差 所以只适用于较厚膜 厚度 >1 μ m)的测量.

设 *m*₁ 为腐蚀前硅片的质量 *,m*₂ 为腐蚀后硅片的质量 *m*₃ 为清除掉多孔硅层后的硅片质量 *,*则多孔硅的孔隙率为

 $\varepsilon = (m_1 - m_2)/(m_1 - m_3).$ (8) 精确地测定腐蚀前后以及清除掉多孔硅层后的硅片 的质量,即可计算得到多孔硅的孔隙率. 2 实验材料及测试

实验用 N 型 100 面单晶硅制备多孔硅. 硅片 置于盛有浓度为 40 体积百分比的氢氟酸与酒精混 合溶液中进行电化学腐蚀,其中硅片作为阳极,液体 为恒温 20℃. 样品腐蚀后放入乙醇中清洗多次,然 后置入真空烘干箱,干燥 24 小时,使乙醇完全蒸发.

使用 EG&G ORTEC 快 – 快符合寿命谱仪,进行 了正电子湮灭寿命谱常温测量. 在测量中,放射源为 以铝 Al 为衬底的²²Na 夹心源,源强为 20μ Ci Na 视窗 条件下的 FWHM 为 270 ps,道宽为 144 ps,每个谱的 总计数为 2×10^6 .为了保证较小 δ 值,以满足(6)式的 条件,对未腐蚀前硅片(简称硅基体)的正电子谱采用 双寿命拟合,对多孔硅的谱线采用三寿命拟合.

表1 在不同氢氟酸浓度腐蚀条件下制备的多孔硅的正电子湮灭参数 (阳极电流密度 $I = 30 \text{ mA/cm}^2$ 室温 T = 20 °C 腐蚀时间 t = 20 min)

氢氟酸 体积 百分比	$ au_1$ /ps	$ au_2$ /ps	$ au_3$ /ns	I ₁ /%	I2 /%	I ₃ /%	多孔硅 厚度 /μm	孔隙率 /%
20	228	467	35.7	93.8	3.3	2.9	73.5	82
40	233	455	32.6	93.7	3.2	3.1	88.1	75
60	229	463	27.2	93.4	3.3	3.3	91.2	70
80	230	473	11.2	92.2	3.7	3.7	99.5	63
100	235	443	6.4	93.1	3.2	3.2	102.3	60

表 2 在不同氢氟酸浓度腐蚀条件下制备的多孔硅薄层正电子湮灭参数(阳极电流密度 I = 30mA/cm² 定温 T = 20℃ 腐蚀时间 t = 20min)

氢氟酸体积百分比	$ au_1/\mathrm{ps}$	$ au_2/\mathrm{ps}$	$ au_3/\mathrm{ns}$	<i>R</i> ∕nm	$I_1 / \%$	$I_2 / \%$	$I_3 / \%$	多孔硅厚度/μm	孔隙率/%	δ/%
20	238	798	35.7	11.09	71.7	4.0	24.3	73.5	82	-0.6
40	269	558	32.6	10.68	80.6	3.2	16.2	88.1	75	-0.10
60	237	565	27.2	9.94	82.1	3.6	14.3	91.2	70	-0.3
80	239	544	11.2	6.87	81.4	4.9	13.7	99.5	63	-0.3
100	256	458	6.5	5.37	85.4	3.2	11.4	102.3	60	0.1

表 3 在不同电流密度腐蚀条件下制备的多孔硅的正电子湮灭参数(体积比 HF $: CH_3 CH_2 O = 1 : 1$,室温 $T = 20^{\circ}C$)

电流密度 /mA	腐蚀时间 t/min	$ au_1/\mathrm{ps}$	τ_2/ps	$ au_3/\mathrm{ns}$	$I_1 / \%$	$I_2 / \%$	$I_3 / \%$	多孔硅厚度/μm	孔隙率/%
10	60	228	441	5.3	92.9	3.3	3.8	119.5	52
20	30	228	452	8.7	94.5	2.8	2.7	105.2	65
30	20	229	482	11.2	93.6	3.2	3.2	94.3	71
40	15	232	472	19.0	94.0	2.8	3.2	90.7	75
50	12	233	448	25.9	94.1	2.8	3.1	91.2	74

电流密度/mA/cm ²	腐蚀时间/min	$ au_1/\mathrm{ps}$	$ au_2/\mathrm{ps}$	$ au_3/\mathrm{ns}$	<i>R</i> ∕nm	$I_1 / \%$	$I_2 / \%$	$I_{3}/\%$	多孔硅厚度/μm	孔隙率/%	δ/%
10	60	230	448	5.3	4.87	87.7	3.4	8.9	119.5	52	-0.1
20	30	231	531	8.7	6.14	89.1	1.9	9.1	105.2	65	0.2
30	20	237	742	11.2	6.87	83.0	3.2	13.8	94.3	71	0.15
40	15	259	716	19.1	8.61	82.5	1.2	16.3	90.7	75	-1.7
50	12	265	620	25.1	9.62	82.6	1.2	15.2	91.2	74	-0.8

表 4 在不同电流密度腐蚀条件下制备的多孔硅薄层的正电子湮灭参数(体积比 HF: CH₃CH₂O = 1:1 室温 T = 20℃)

3 结果和讨论

硅基体的结果为: $\tau_1 = 227$ ps, $\tau = 436$ ps, $I_1 = 96.8\%$ $I_2 = 3.2\%$.在多孔硅的正电子湮灭寿命谱 结果中,短寿命组分 τ_1 为228—235 ps之间,长寿命 组分 τ_2 为441—482 ps之间,与单晶硅及非晶硅的 体寿命值基本一致.最长寿命组分 τ_3 为几到几十纳 秒,是在孔洞中形成正电子素 o – Ps的拾取湮灭的 结果.从多孔硅及硅基片共同寿命谱结果中扣除硅 基片成分后,便可得到多孔硅薄层正电子湮没参数 (见表2和表4).δ在±2%以内.

实验结果显示,多孔硅薄层的短寿命成分 τ_1 与 样品的短寿命实验参数接近,稍稍偏大,是多孔硅 晶粒晶格膨胀的结果^[6]. 长寿命成分 τ₂ 与样品实验 参数也较接近,为多孔硅中缺陷湮没成分.最长寿命 成分 τ₃ 为正电子在多孔硅孔洞和缺陷中湮没的平 均寿命,是正电子形成 o – Ps 的结果^[6].由表 2 可 知 r, 随氢氟酸浓度的增加而减小,其百分含量 I, 也随之减小 原因在于当氢氟酸浓度较高时 位于表 层的硅吸附了较多的 F 离子 因而在表面形成较高 的势垒 阻挡了 F⁻离子的通过,导致在相同电流密 度下氢氟酸对孔壁的腐蚀作用减弱.表4的结果表 明 在腐蚀时间与电流密度为常数条件下 π_1 I_3 都 随电流密度的增大而增大 说明电流密度是决定多 孔硅的孔的大小和孔率的主要因素.由正电子素 o – Ps 的 Pick-off ^[7]的湮灭模型可知 π_3 值与多孔 硅的孔半径 R 有关 r, 越大 R 越大. 根据分形聚集 体理论(DLA)生长模型^[8],当电流密度增加,粒子 向硅表面的迁移几率增大,平均自由程减短 扩散长 度减小 孔向孔壁生长的几率变大 ,使得孔变大 ,孔 密度增加. 同时电流大时在孔内部顶端容易产生惰 性氧化物 使原孔顶端粒子俘获生长的几率大大下

降,而孔壁的生长几率相对增大,也使得孔变宽,孔 密度增加.这种现象与文献3]中的报道一致.

本文用多孔硅体寿命谱扣除基片寿命谱的方法 研究了多孔硅薄层的孔半径的变化与腐蚀电流强度 和腐蚀时间的关系,得出与其他方法相同的结论,因 此该方法为研究材料表面薄层的微孔半径变化提供 了一条新途径.

参考文献

- [1] 涂楚辙,江从春.功能材料,2000,31:139[TuCZ,Jiang CC,Functional Materials,2000,31:139(in Chinese)]
- [2] 王晓静, 李清山. 液晶与显示, 2003, 18 421[Wang X J, Li Q S. Chinese Journal of Liquid Crystals and displays 2003, 18 421(in Chinese)]
- [3] 许媛媛,何金田,李新建等. 传感器技术 2003 22 5[Xu Y Y, He J T, Li X J et al. Journal of Transducer Technology, 2003 22 5 (in Chinese)]
- [4] 何元金,郁伟中等. 正电子湮没寿命谱学基础. 北京 清华 大学物理系(内部交流),1983[He Y J, Yu W Z et al. Introduction of the Positron Life Spectroscopy. Beijing: Physics Department of Tsinghua University, 1983 (in Chinese)]
- [5] 郁伟中编著. 正电子物理及其应用. 北京:科学出版社, 2003[Yu W Z. Positron Physics and its Applications. Beijing:Science Press, 2003 (in Chinese)]
- [6] 邹秦,张清琦. 西安交通大学学报,1997,31:18[Zhou Q,Zhang QQ. Journal of Xián Jiaotong University,1997,31: 18(in Chinese)]
- [7] Eldrup M , Lightbody D. Chem. Phys , 1981 , 63 : 51
- [8] 杨展如著. 分形物理学. 上海:上海科技教育出版社,1996
 [Yang Z R. Physics of Fractals. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1996(in Chinese)]
- [9] Venkateswaran K, Chen K L, Jean Y C. J. Phys. Chem., 1984, 88:2455
- [10] Jean Y C , Venkateswaran K , Parsai E et al. Appl. Phys. , 1984 , 35 :169