时间分辨电子显微镜的可行性研究*

刘运全 张 杰 孝玉同 张 军 邱 阳

(中国科学院物理研究所光物理重点实验室 北京 100080)

摘 要 文章从理论上分析了飞秒激光与金属阴极的相互作用过程. 将飞秒激光与金属阴极产生的超短电子脉 冲作为电子源,提出了一种具有时间分辨能力的电子显微镜(TREM)的概念设计. 文章作者详细地研究了这种电子 显微镜的可行性,并讨论了超短电子脉冲的传输和控制问题.

关键词 时间分辨电子显微镜 ,飞秒电子脉冲 ,飞秒激光

Feasibility study on time resolved electron microscopy

LIU Yun-Quan ZHANG Jie[†] LI Yu-Tong ZHANG Jun QIU Yang (Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China)

Abstract The interaction process of femtosecond laser pulses with metal photocathodes is studied. Based on the ultrashort electron pulses generated by this process we propose a conceptual design of time resolved electron microcopy. Its feasibility is analyzed , and the problem of control and propagation of the electron pulses discussed.

Key Words time resolved electron microscopy, ultrashort electron pulses, femtosecond laser

1 研究背景

超快时间分辨技术是人们研究和探索微观世界 动力学过程的重要手段.科学家一直梦想着能够像 看电视那样,连续观察和研究原子分子领域的超快 运动过程^[1].随着超短脉冲技术的发展,包括超短 光脉冲技术、超短电子束技术、超短 X 射线技术及 中子散射技术的发展,人们对微观世界物质的物理 和化学过程研究有了重要的工具.利用超短脉冲技 术 科学家可以研究许多超快过程,包括光合作用过 程,化学反应中的化学键断裂和形成过程,原子和分 子的振动过程,以及固体物理中电子和声子的运动 过程等等.

近年来,科学家开始了有关超短时间分辨的电子、X 射线、中子衍射实验研究^[2]. Elsayed-Ali 等利 用时间分辨的高能电子衍射技术(RHEED),研究了 金属晶格的温度变化过程^[3]. 在 Arkansas 大学的时 间分辨电子衍射(time resolved electron diffraction, TRED)装置上^[3],科学家实现了气相电子衍射研究. Zewail 实验室的超快电子衍射装置(UED $\}^{41}$ 是 一种研究瞬态分子结构的装置,其时间分辨可以达 到 1ps,理论上空间分辨可达 0.01Å. 中国科学院物 理研究所张军等提出了利用高强度飞秒激光与铝靶 相互作用产生超短脉冲超热电子进行衍射实验并对 其可行性进行了分析^[51]. 在强激光与等离子体相互 作用过程中,可以产生丰富的 X 射线,Christoph 等 人用飞秒激光与铜相互作用产生 K_a线,并用来研 究 GaAs 半导体材料的晶格动力学特征^[61]. 1996 年, Schoenlein 等人在斯坦福大学直线加速器(SLAC)装 置上采用太瓦(TW)激光与电子束成 90°的汤姆孙 散射的办法,得到了 10⁻¹³s 的 X 射线脉冲,并用来 研究半导体材料的性质^[71]. 现在变象管高速摄影机 可以实现从微秒(10⁻⁶s)、纳秒(10⁻⁹s)甚至达到亚

† 通讯联系人. Email ;jzhang@ aphy. iphy. ac. cn

 ^{*} 国家重点基础研究发展计划(批准号:G1999075206)和国家高 技术发展计划(批准号:10075075)资助项目
 2003-11-11 收到初稿:2004-11-30 修回

皮秋(10⁻¹²s)的时间分辨率.

理论和实验上已经证明 在飞秒激光脉冲与金 属阴极相互作用过程中,可以产生超短的电子脉冲, 而且这些技术已经广泛地应用于一些光抽运 – 电子 探测相关的实验中. 爱因斯坦最早通过量子化的方 法解释了光电效应现象, 1931 年 Fowler^[8]和 1933 年 Dubridge^[9]等人详细讨论了影响光电发射的因 素 提出了 Fowler - Dubridge 理论(简称 F - D 理 论).在研究光电效应时,人们普遍采用 F-D 理论, 而在 F – D 理论中,没有考虑空间电荷效应引起的 发射电流饱和与多光子光电效应现象. 超短脉冲激 光与金属通过线性或者非线性光电效应可以产生与 光脉冲脉宽相当的电子脉冲.在1977年,Bechtel等 人研究了 W ,Ta 等金属表面的双光子光电效应 ,并 进一步完善了 F - D 理论^[10]. Makoto Asakawa 等人 使用 2 倍频的 Nd :YAG 激光,研究金属钨双光子光 电效应 希望能为自由电子激光器提供高亮度的、单 色性好的电子源[11]. 近年来,人们逐渐开始对中红 外激光的多光子光电效应现象进行研究. 2003 年, Gianpiero Banfi 等人详细地研究了 Ti :Sa 飞秒激光 的基频、2 倍频、3 倍频与 Ag(100)面的光电效应,并 提出了几种可能机制^[12].由此可见,超短脉冲激光 与金属相互作用的多光子光电效应研究依然是个很 热、很有意思的领域. 飞秒光脉冲与金属相互作用产 生的微电子束具有很好的时间和空间特性. 现在超 短电子束技术 在加速器的实验研究中也具有重大 的意义.随着自由电子激光器的发展,光阴极射频 (photoemission radiofrequency) 电子枪已经可以做到 $250 fs^{[13]}$.

我们知道,现代电子显微镜已经达到了 0. 1Å 的空间分辨能力,而对于电子显微镜的时间分辨研 究工作,国内外开展很少.本文试图通过理论上论证 实现具有空间和时间分辨的电子显微镜(time resolved electron microscopy, TREM)的可能性,期望能 为人们研究微观世界提供更好的分析和表征工具.

2 飞秒激光与金属的相互作用

金属电子体系的非平衡态和超快动力学问题近 些年来吸引了很多物理学家的关注. 在飞秒量级的 时间尺度内,电子和声子的非平衡态特征已经变得 很重要了. 飞秒激光的出现,为人们研究处于非平衡 态电子体系问题提供了很好的实验手段. 人们可以 研究半导体中载流子的输运和散射特征,金属中费 米面附近电子的运动行为 ,以及超导体系中的电子 输运问题等等.

早期论文对纳秒激光与金属相互作用问题有很 多研究^{10]}. 金属中导带电子的弛豫时间为 τ_∞ ~ 10^{-14} — 10^{-13} s, 电子 – 声子碰撞的弛豫时间为 τ_{al} ~ 10⁻¹²—10⁻¹¹s 因此在纳秒和皮秒量级的脉冲与金 属相互作用过程中,电子温度与晶格温度可以通过 电子 – 声子碰撞达到平衡($T_a = T_1$),其中 T_a 表示电 子温度 ,T,表示声子温度. 而对飞秒脉冲与金属相互 作用过程 这个物理图像是不适用的 因为在飞秒脉 冲作用下 金属中的电子迅速从激光场中吸收能量, 电子将处于非费米 - 狄拉克分布 然后通过电子 -电子、电子 – 声子的碰撞达到热平衡. 我们知道电子 是费米子 服从费米 – 狄拉克分布 ,声子服从的是玻 色 - 爱因斯坦分布,电子从激光辐射场中吸收能量, 电子的温度将迅速升高 电子将处于非平衡状态 然 后系统通过电子 – 电子碰撞和电子 – 声子碰撞达到 平衡.

对飞秒激光与金属的相互作用过程,我们采用 一维双温模型^{14]},可以用以下方程描述:

$$C_{\rm e}(T_{\rm e})\frac{\partial T_{\rm e}}{\partial t} = K \cdot \frac{\partial^2 T_{\rm e}}{\partial z^2} - g \cdot (T_{\rm e} - T_{\rm i}) + Q(\mathbf{r} t),$$
(1)

$$C_{\rm I}(T_{\rm I})\frac{\partial T_{\rm I}}{\partial t} = g \cdot (T_{\rm e} - T_{\rm I}), \qquad (2)$$

其中 $Q(\mathbf{r}_t) = \alpha(1 - R)I_0(\mathbf{r}_t)$ 表示金属表面对激 光能量的吸收 α 为吸收系数 , $C_e(T_e) = C_eT_e$ 表示 电子热容 , $C_1(T_1)$ 表示晶格热容 ,K 为导热系数 ,g 为电子 – 声子耦合系数. 在这个模型中 ,我们考虑电 子和声子之间的耦合 ,由于光脉冲的时间宽度是飞 秒 ,而电子与声子的耦合时间一般为几个皮秒量级 , 因此在飞秒激光的作用下 ,金属中的电子和声子都 处于非平衡分布 ,电子温度和声子温度不能用同一 个温度来表示.

我们假定反射系数 R 随电子温度变化较小,通 过数值求解上面的耦合方程,我们可以得到金表面 在脉冲宽度为 150fs 激光辐照下电子温度和晶格温 度的变化(见图1).在求解的过程中,我们做了一些 简化,忽略了热传导效应的影响,几种金属材料的电 声耦合系数、电子热容与晶格热容如表1所示.其中 初始电子温度为 300K、波长为 280nm 的激光垂直入 射时反射系数为 R(铜) = 0.33, R(金) = 0.378;波 长为 400nm 时 R(铜) = 0.475, R(金) = 0.387^[15].我们选择的激光辐照强度低于金和铜的损伤阈值.

图 1 飞秒激光作用下金属表面的温度效应

表1 几种金属材料的电声耦合系数、电子热容、晶格热容、热传导系数

金属	g	$C_{ m e}$	K_0	C_1	
材料	$(10^{16} \text{Wm}^{-3} \text{K}^{-1})$	$(Jm^{-3}K^{-2})$	(Wm ⁻¹ K ⁻¹)	$(10^{6} \text{ Jm}^{-3} \text{ K}^{-1})$	
金	2.1	71	318	2.5	
钼	13	350	135	2.8	
镍	36	1065	91	4.1	
铜	10	96.6	385	3.5	

传统光电效应的发射电流通常采用 Fowle -Dubrige 理论, Bechtel 在这个理论基础上发展了超 短脉冲与金属的光电效应理论[10]. 对于单光子光电 效应(即线性光电效应)发射电流与入射激光强度 成正比. 当激光的光子能量低于金属的逸出功时候, 传统的光电效应理论认为 ,是不能够产生光电子的. 但实验中,人们发现在低于金属损伤阈值的情况下, 通过多光子光电效应也是能够产生光电子的,这时 满足 $nh\nu > \Phi$,其中 $n = [\Phi/h\nu] + 1$,发射电流正比 于光强的 n 次方. 超短光脉冲与金属相互作用产生 的光电流与金属内部的电子温度有一定的关系.通 过双温模型,可以得到金属表面在超短脉冲辐照下 的电子温度 理论上可以计算发射电流的大小与光 强的定量关系.通过光电效应产生的光电流发射密 度一般为几个 A/cm^2 ,而作为加速器的光阴极注入 器可达几百 A/cm² 所以飞秒激光与光阴极相互作 用可以为加速器和时间分辨电子显微镜提供高亮度 的电子源.

3 时间分辨电子显微镜的概念设计

时间分辨衍射将是研究超快过程的有力工具. 通常实现时间分辨有两种方法:一种是抽运 – 探测 的方法;另外一种就是高速摄影,而高速摄影的方法 一般不具有空间分辨能力. 光抽运 – 电子束探测的 方法有着很广泛的应用,比如在飞秒化学领域中,诺 贝尔奖获得者 Zewail 实验室设计和建造的超快电 子衍射(ultrafast electron diffraction,UED)装置^[4].该 装置采用 800nm,120fs 的 Ta: Sa 激光三倍频以后, 得到功率为 350 μJ、波长为 267nm、脉宽为 120fs 的 光脉冲. 其中 80μJ 的激光用来辐照金属银(银的逸 出功为 4.3eV),作为光阴极的电子枪,可以产生约 25 000 个电子、时间宽度为 4ps 的电子脉冲.目前 UED 装置可以在 30kV 电压作用下,空间分辨达 0.01Å 时间分辨为 1ps.

为实现时间分辨电子显微镜,我们设计的电子 显微镜结构如图 2 所示,它主要由光阴极电子枪、电 子光学系统、电子束扫描系统与探测系统、抽运光与 光阴极电子枪的同步和延时系统以及成像处理系统 组成.我们知道,详细计算电子显微镜系统的电子传 输和像传递是非常复杂的,这里我们仅仅讨论影响 系统的一些主要因素和定性特征.

3.1 光阴极电子枪

传统电子显微镜的电子枪阴极主要有热阴极和 场发射阴极.在选择合适光阴极材料的时候,通常需 要考虑以下原则(1)容易制作(2)不易受到污染; (3)具有较高的量子效率和和损伤阈值(4)具有尽 量低的逸出功(5)较快的电子响应速度(6)在飞 秒激光作用下,光电子具有非常小的初始速度和发 射立体角.根据上面的选择标准,金属阴极是最适合 的.虽然其量子效率与碱金属、双碱或者多碱金属阴 极相比是很低的,而且其逸出功一般都是大于4eV 的,但因为具有较快的响应速度,耐污染,有较大的 自由电子密度,通过单光子或多光子光电效应可以 产生性质非常好的电子脉冲.超快时间衍射装置和 自由电子激光的光阴极装置,都采用金属阴极.

在上面第2节正文中,我们详细讨论了超短脉 冲激光与金属阴极的相互作用过程,讨论中,我们忽 略了电子流的空间电荷效应.在实际的光电子产生 过程中,空间电荷效应是必须抑制的,需要加合适的 直流高压电场,以消除空间电荷效应引起的电子束 时间展宽.

我们拟采用单光子光电效应,采用金属银作为 光阴极,其逸出功为4.3eV.利用中国科学院物理研 究所光物理实验室钛:宝石飞秒激光器三倍频后得 到267nm(光子能量为4.6eV),150fs的激光脉冲, 这样最可几的光电子能量为0.3eV,由光电效应理 论^[16],我们分析了光脉冲与金属银相互作用产生的

图 2 一种具有时间分辨能力的电子显微镜结构

光电子能谱分布,如图 3 所示. 金属银的量子效率约 为 2 × 10^{-5[17]},因此我们可以估计在此激光脉冲作 用下产生的电子数目. 假定波长为 266nm 的光脉冲 能量为 50μJ 根据下式:

$$Q(nC) = \frac{10 \cdot W_{laser}(\mu J) \cdot QE(\%)}{h\nu(eV)} \quad (3)$$

(式中Q表示产生电荷, W_{laser} 表示激光能量,QE表示量子效率, $h\nu$ 表示光子能量),可以得到每个电子 脉冲中最多含有 1.36 × 10⁹ 个电子,电荷量为 0.22nC.实际上,由于光在阴极表面的反射、透射和 空间电荷效应等因素的影响,透过电子光学系统到 达样品的电子数目要少一些.

我们还对光阴极与其他几种已经很成熟的电子 显微镜阴极的性能作了比较(见表2),我们可以发 现,光阴极在飞秒激光作用下,除了具有超短脉冲宽 度外,其他性能指标与其他阴极相差不多.

3.2 电子光学系统

具有空间电荷效应的电子束在电子光学系统中 的运动,通常采用 Child – Langmuir 方程描述,而对 于超短电子脉冲的运动,是不适用的.用于控制超短 电子脉冲的电子光学系统,不仅要有良好的空间传

图 3 波长为 267nm 激光辐照金属银表面产生的光电子能谱分布

递特性,而且需要研究在瞬变电磁场中电子束的成 像特性.另外由于光脉冲持续时间很短,它所产生的 电子脉冲随时间处于电子光学系统中的不同部位, 电子束是不连续的,或者说,空间电荷效应是不稳 的.上述这些特点表明,要处理这类电子光学问题, 就必须引入时间变量.它的引入不仅为求解非稳态 场和求解运动方程所必需,而且时间响应特性已成 为衡量某些电子光学系统性能优劣的重要标志.这 里由于问题的复杂性就不详加讨论.下面仅定性地

性能		光阴极(脉冲式)	热阴极		场发射阴极		
			W	LaB ₆	热阴极		冷阴极
					ZrO/W(007)	W(007)	W(310)
发射电流密度(A/cm ²)		500 *	1	20—50		100—500	100—1000
光源尺寸(μm)		10—100	50	10	0.1—1	0.5-0.8	10—100
能量发散度(eV)		0.5—3eV	2.3	1.5	0.5-0.8	0.6-0.8	0.3-0.5
使用条件	真空度	10 ⁻⁴ pa	10 - 3	10 -5	10 - 7	10 -7	10 - 8
	温度(℃)	变化	2800	1800	1800	1600	300
	电流	nA—µA	100µA	20µA	100µA	20—100µA	20—100µA
	短时间稳定度		1%	1%	1%	7%	7%
	长时间稳定度		1%/h	3%/h	1%/h	6%/h	5%/15min

表 2 几种电子显微镜阴极性能比较

* 取自自由电子激光器中光阴极注入器的数据

分析影响电子脉冲宽度演化的因素.

电子脉冲自光阴极产生后 由电场对其加速 经 过电子光学系统聚焦、压缩后 其脉冲宽度有一定的 变化. 其渡越时间弥散可用 $\tau_{R} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{i} \cdot p(\Delta t_{i})$ 来表示 ,式中 $p(\Delta t_i)$ 表示渡越时间差 Δt_i 出现的概 率 详细计算电子脉冲经过电子光学系统时间宽度 的变化是很复杂的事情,可以简单地表示为 $\tau = (\tau_i^2)$ + τ_1^2 + τ_2^2 + τ_n^2)^{1/2} ,其中 τ_i 为初始能量展宽引 起的脉冲宽度,它可以近似认为等于激光脉冲宽度, τ_{a} 为经过各个电子光学系统引起的脉冲展宽. 我们 知道 由于光电子能谱分布和角分布不同 电子的传 输初始速度大小和方向对电子脉宽有很大的影响. 可以做一下估计,假定光阴极到栅极的电压为 30kV 阴极到栅极的距离为 d = 3mm 初始的光电子 能量半宽度约为 $\Delta \varepsilon = 0.15 \text{ eV}$,可以计算得到 $\tau_1 =$ 2. $34 \times 10^{-8} \sqrt{\Delta \varepsilon} d/V = 90 \text{ fs}^{[18]}$,还可以发现 增加电 场强度可以减小电子渡越时间. 这样电子脉冲到达 栅极后的脉冲宽度为 $\tau = (150^2 + 90^2)^{1/2} \approx 174 \text{ fs}$ 可以发现电子脉冲的宽度有所展宽. 通过计算. 我们 可以得到初始的电子脉冲在不同栅极电压作用下, 到达栅极后脉宽的变化如图 4 所示.

由此可见,为了提高时间分辨率,除了尽量设法 减小光电子能量初始速度分布和初始角度分布之 外,还需要优化电子光学系统设计,选择合适的扫描 线路和设计合理的偏转系统.如果能找到某种光阴 极,在飞秒激光作用下,发射的光电子脉冲具有较小 的初能量和切向角速度分布,且电子光学系统能够 很好地抑制空间电荷效应,扫描线路具有非常快的 响应,则理论上可以把电子显微镜的时间分辨能力

图 4 不同加速电场作用对电子脉冲时间宽度影响

提高到 10⁻¹⁴s. 电子光学系统在时间分辨电子显微 镜系统中,有着严格的要求,必须保证电子脉冲在传 输过程中时间特性和空间特性保持不变,即具有很 好的时间和空间传递特性. 这里可以借鉴变像管高 速摄影相机的电子光学系统,在这里我们就不详细 论述.

3.3 光抽运与电子探测的调节系统

在时间分辨电子显微镜系统中,还有一个重要 的环节就是抽运光脉冲与探测电子脉冲的同步和延 时调节.为了得到不同时刻的电子衍射图像,需要精 确调节驱动光阴极的光脉冲和抽运光.由于我们设 计的显微镜中电子速度比光速度小得多,所以探测 电子脉冲与抽运光的同步和延迟对电子光学系统的 设计有着重要的依赖.关于电子光学系统的设计在 3.2节中有所阐述.脉冲经过样品后,会有很大的损 失,为了能够得到单电子脉冲的衍射像,可以采用微 通道板 MCP 进行弱电荷信号放大,通过计算机对衍 射图样进行计算处理.

结论 4

本文详细地讨论了采用飞秒激光与金属的相互 作用产生的微电子团作为时间分辨电子显微镜电子 源的可行性,理论上论述了超短电子脉冲的产生、传 输和控制 期望超短电子脉冲在合适的电子光学系 统的加速和聚焦过程中 具有较好的时间和空间特 征. 时间分辨电子显微镜是一种全新的概念 在这里 我们仅仅做了一点点探索性的工作.我们试图将超 短脉冲技术、电子显微镜和高速变像管技术集于一 体,并论证了时间分辨电子显微镜的可行性.通过论 证 我们相信综合现有的技术可以达到以下指标 单 电子脉冲中的电子数目达 10⁵—10⁶ 脉冲宽度小于 500fs ,重复频率为 1000 ,时间分辨能力优于 1ps ,空 间分辨能力可达到 0.1nm. 目前中国科学院物理研 究所光物理实验室正充分利用现有的实验资源,如 5mJ、150fs 钛宝石激光器 ,Ceiss 902 电镜等等,进行 初步实验研究 但时间分辨电子显微镜毕竟是探索 性的工作,有许多实际复杂的问题期待解决.

- 参考文献
- [1] Craig W S, Andrea C, Klaus S-T et al. SPIE 44th Annual Meeting , Denver , July , 1999
- [2] Helliwell J R, Rentzepis P M Eds. Time Resolved Diffraction.

物理新闻和动态。

- New York : Oxford Univ. Press , 1997
- [3] Elsayed Ali H E , Herman J W. Appl. Phys. Lett. , 1990 , 57 :1508
- [4] Ihee H, Lobastov V A, Gomez U M et al. Science, 2001, 291 458
- [5] 张军 涨杰等. 物理学报 2002 51 :1764 [Zhang Jum , Zhang Jie et al . Acta Phys. Sin. , 2002 51 :1764 (in Chinese)]
- [6] Christoph R-P , Ralph J , Ting G. Nature , 1999 , 398 310
- [7] Schoenlein R W, Chattopadhyay S et al. Science, 1996 287: 5461
- [8] Fowler R H. Phys. Rev. , 1931 , 38 45
- [9] Dubridge L A. Phys. Rev., 1933, 43, 727
- [10] Bechtel J H. J. Appl. Phys. , 1975 , 46 1585
- [11] Asakawa M, Mima K, Nakai S. Appl. Phys. Lett. , 1994, 84 2056
- [12] Georges A T. Phys. Rev. B , 2002 , 66 063412
- [13] Wang X J. Proceedings of the 2001 Particle Accelerator Conference, Chicago
- [14] Anisimov S I, Apeliovich B L K et al. Eksp. Teor. Fiz., 1974 66 776 [Sov. Phys. JETP ,1974 , 39 375]
- [15] 饭田修一等合编. 张质贤等译. 物理学常用数表[日]北 京科学出版社, 1979[饭田修一 et al. eds. Zhang Z X trans. Tables of Physical Common Parameters. Beijing Science Press, 1979(in Chinese)]
- [16] Rudberg E. Phys. Rev. , 1935 , 48 811
- [17] Anderson T, Tomov I V, Rentzepis P M. J. Appl. Phys., 1992,71 5161
- [18] Qian B-L , Elsayed-Ali H E. J. Appl. Phys. , 2002 , 91 462

如何在半导体芯片上监测巨量声波气泡

在高达数十亿美元的半导体工业生产过程中 ,硅晶片要经历多次的超声波清洗工序. 对于该工序却一直 没有一个可靠的监控手段.当晶片沉浸于液体中并经受着高频声波的清洗时.利用在液体中产生巨量的气泡 可以有效地清除掉晶片上的杂质和一些微小粒子.另一方面,这种清洗也会不经意地损害晶片上的电路,从 而使合格晶片的产量减少.此后,这个清洗工序还将进一步带来危害,因为许多芯片还在进行微型化,例如新 的苹果机 MacG5 中的元件只有 95nm 的大小.

在美国圣地亚哥召开的美国声学年会上(2004 年 11 月中旬) 奥地利电子公司在硅谷的分公司 SEZ 公 司的 G. Ferrell 博士提出了一种新的光学探针来监测晶片的超声波清洗过程. G. Ferrell 博士和他的同事们 利用强声波清洗时产生一种'多泡声致发光 '(multibubble sonoluminescence , 简称为 MBSL)效应. 其原理 是在液体中的气泡大量聚集并发生崩塌现象时会辐射出光.这样在液体中的巨量气泡在发生崩塌处会映射 出一幅" 声致发光图像 ". 将气泡崩塌的位置与在晶片上被清除微粒的图像作对比,就可以很方便地监测从 晶片上清除 100nm 或更大一些杂质微粒的过程. 现在他们已经可以利用' 声致发光图像 "方法来提高超声波 清洗的效率. 下一步 G. Ferrell 博士的研究组还准备使超声波清洗更加均匀化 这种完全属于基础研究领域 的声致发光原理是第一次应用于实际的工业生产中.

(云中客 摘自美国声学年会论文集. November 2004. 2pPA6)