前沿进展

原子漏斗及其应用*

代 萌 印建平[†]

(华东师范大学物理系 光谱学与波谱学教育部重点实验室 上海 200062)

摘 要 文章简单介绍了磁、光原子漏斗的基本原理,详细综述了各种原子漏斗方案及其实验结果.这些漏斗方 案主要包括采用红失谐高斯光束、蓝失谐消逝波光场和空心光束串联而成的光学原子漏斗,采用载流导线的静磁 原子漏斗以及采用磁光凝胶构成的磁光原子漏斗.文章最后还简单介绍了原子漏斗在原子光学领域中的潜在应 用.

关键词 原子漏斗 原子光学 原子光学器件

Atom funnels and their applications

DAI Meng YIN Jian-Ping[†]

(Key Laboratory for Optical and Magnetic Resonance Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China)

Abstract The basic principles of magnetic and optical atom funnels are introduced and the schemes and experimental results of various funnels are reviewed in some detail. These include optical funnels using a focused red-detuned Gaussian beam , blue-detuned evanescent-light wave and blue-detuned hollow beam , magnetic funnels with current-carrying wires , and certain magneto-optical funnels using magneto-optical molasses techniques. Finally , some potential applications of these funnels in atom optics are briefly described.

Keywords atom funnel ,atom optics , atom-optical device

1 引言

为了实现冷原子样品从毫米尺寸的磁光阱(或 原子束)到亚毫米(甚至微米)尺寸的磁、光实验装 置(原子光学器件)的有效装载,或利用磁光阱实现 高亮度相干冷原子束的产生,人们需要一种用于收 集并压缩冷原子的原子光学器件.这一器件的作用 类似于日常生活中所用的漏斗,故称之为"原子漏 斗".

在原子光学实验中,人们可利用磁光阱来获得 冷原子,但当它关闭时,被囚禁的冷原子将被释放并 自由下落和扩散,不能形成实用的冷原子束,为此需 要原子漏斗来收集磁光阱中的冷原子,从而产生一 束高亮度的冷原子束.原子漏斗还可用于实现冷原 子从磁光阱到微型磁、光波导的有效装载,从而实现 冷原子的磁、光导引.此外,它还可用于实现中性原 子的激光冷却与囚禁,也可用于原子喷泉中有效地 收集上抛后下落的冷原子团,从而大大提高信噪比 及其频率稳定度.因此,原子漏斗不仅可用于产生一 束发散角小、速度宽度窄、亮度高的冷原子束,而且 还可用于超高分辨光谱学、量子频标和低能原子碰 撞等基础物理问题研究以及原子导引、原子全息和 原子光刻等原子光学实验研究.

近年来,人们提出并实验研究了多种原子漏斗 方案.早在1990年,Chu等人首先提出并实验研究 了利用二维磁光阱产生冷原子束的原子漏斗方 案^[1]获得了温度为200μK、密度为10⁸原子/cm³ 的冷 Na 原子束.同年,Ertmer等人设计了一种采用 塞曼减速器和二维磁光阱技术的原子漏斗方案^[2], 将约3mm 直径的初始原子束压缩为43μm 直径的

† 通讯联系人. Email: jpyin@phy. ecnu. edu. cn

 ^{*} 国家自然科学基金(批准号:10174050,10374029,10434060)和
上海市重点学科以及教育部211 专项基金资助项目
2004 - 11 - 16 收到初稿2004 - 12 - 10 修回

冷 Na 原子束. 随后 他们通过改进实验装置^[3,4],得 到了温度约为 11.8 μ K、密度约为 10⁸ 原子/cm³ 的 冷原子束^[3,4]. 1994 年, Ye 等人提出一种采用纵向 聚焦四极磁场构成的二维磁光阱技术的原子漏斗方 案^[5] 获得了直径为 200 μ m、密度为 3 × 10⁹ 原子/ cm⁻³的冷 Cs 原子束^[5]. 1997 年, Ito 等人提出了采 用蓝失谐消逝波光场的原子漏斗方案,理论研究表 明,该漏斗具有50%的收集效率[6].1998年,印建平 等人提出一种采用中空光纤与空心光束串联而成的 原子漏斗方案 其收集效率可达到 98%^[7]. 最近,为 了实现冷原子的微磁波导 特别是在原子芯片表面 上的磁波导,人们相继提出了各种采用载流导线或 载流导体构成的静磁原子漏斗方案^[89].由于原子 漏斗在原子光学实验中有着十分重要的应用,本文 将就几种典型的原子漏斗方案、实验结果及其最新 进展作一系统综述,并就原子漏斗的应用作一简单 介绍.

2 原子漏斗的工作原理

冷原子在磁、光漏斗中受到的相互作用势(偶 极作用力)类似于它在磁、光导引中受到的相互作 用势,其工作原理可分别简述如下:

2.1 光学原子漏斗的工作原理

由于交流斯塔克效应,当一个二能级原子在非 均匀激光场中运动时,将受到光场的偶极力作用,其 相互作用势为^[10]

$$U(\mathbf{r}) = \frac{\hbar\delta}{2} \ln \left[1 + \frac{I(\mathbf{r})/I_{s}}{1 + 4(\delta/\Gamma)^{2}} \right], \quad (1)$$

式中 (r)和 I_s 分别为激光强度分布和原子的饱和 光强 , Γ 为原子从激发态到基态的自发跃迁速率 δ $= \omega - \omega_0 - k\nu_z$ 表示激光频率相对于原子共振频率 的失谐量 ,其中包含了多普勒频移 $k\nu_z$,这里 k 为激 光波矢. 当光场为红失谐($\delta < 0$)时 ,作用势为吸引 势 ,原子被吸引到光强最大处 ;反之原子则被推向光 强最小处. 因此 ,采用红失谐的聚焦高斯光束和蓝失 谐的会聚消逝波光场或聚焦空心光束的偶极作用 力 ,即可实现原子的会聚导引 ,从而构成各种光学原 子漏斗.

2.2 静磁原子漏斗的工作原理

类似地,由于塞曼效应,当一个中性原子在一个 非均匀磁场中绝热运动时,将受到如下的磁偶极相 互作用势^[11]:

 $U(\mathbf{r}) = -\boldsymbol{\mu} \cdot \boldsymbol{B}(\mathbf{r}) = -g_{F}\mu_{B}m_{F}\boldsymbol{B}(\mathbf{r}),$ (2) 式中 m_{F} 为原子的总自旋在磁场方向上的投影(即 磁量子数)g_F为郎德因子 µ_B为玻尔磁子 ,B(r)为 磁场分布.如果原子的磁偶极距平行于磁场 ,则相互 作用势为吸引势 ,原子将被吸引到磁场强度的最大 处 ;反之 ,则作用势为排斥势 ,原子将被排斥到场强 最弱处.因此利用聚焦的空心管状磁场分布即可实 现冷原子束的会聚导引 ,从而构成各种静磁原子漏 斗.

此外 利用二维 Molasses 光束和聚焦空心磁管 组成的二维磁光阱技术 ,即可构成各种磁光原子漏 斗方案^[1-5].

3 原子漏斗方案及其实验结果

3.1 光学原子漏斗

3.1.1 采用红失谐聚焦高斯光束的原子漏斗

1995 年, Cornell 小组采用聚焦的红失谐高斯光 束作为原子漏斗,实现了室温蒸气室中铷原子的收 集、压缩与导引,其高斯光束漏斗如图1所示^[12].

图1 采用红失谐聚焦高斯光束的原子漏斗

在实验中,一束红失谐的钛宝石高斯激光经过 透镜聚焦后通过一个低真空(10⁻⁶Torr,1Torr=1.33 ×10²Pa)的铷原子蒸汽室而进入几十微米直径的中 空光纤,在光纤的中空区,激发高斯模式.根据交流 斯塔克效应,处于聚焦高斯光束中的铷原子一方面 受到指向光束中心的横向偶极力的作用,另一方面 受到指向光束焦点的轴向偶极力的作用,这样,凡是 进入聚焦高斯光束的冷原子将被吸引至光束中心, 并沿着光束聚焦方向(也即传播方向)被导引进入 中空光纤.显然,这里的红失谐聚焦高斯光束起到了 收集、聚焦和导引原子的作用,也即构成了一个光学 原子漏斗.

3.1.2 采用蓝失谐空心光束的原子漏斗

空心光束指的是中心强度为零的环状光束,通 常产生空心光束的方法有几何光学法、横模选择法、 光学全息法、计算全息法和中空光纤法等^[10].所谓 中空光纤法^[13]:即当一束高斯光束聚焦后入射到中 空光纤的纤芯时,选择激发出光强呈环状分布的 LP₀₁模式,当这一模式传播至光纤的输出端时,将由 于衍射产生一束发散的 LP₀₁模输出空心光束. 当该 空心光束为蓝失谐时,将可用于冷原子的收集、聚焦 与激光导引,从而构成一新颖的光学原子漏斗^[14].

1998 年 印建平等人提出了一种中空光纤和发 散的蓝失谐空心光束串联而成的原子漏斗方案 原 理性实验装置如图 2 所示^[7]. 在图 2 中, 一段几毫米 长的中空光纤的一端首先被切割成 45°并抛光 ;然 后 将一束蓝失谐的高斯光束经透镜耦合进入纤芯, 在斜面上反射后,选择激发 LP。,模,在输出端衍射后 产生一束发散的空心光束.因此,本方案用于构成原 子漏斗的光场由一发散的蓝失谐空心光束和一中空 光纤内的蓝失谐空心消逝波光场串联而成. 这样当 冷原子从发散的空心光束一端输入时,发散的蓝失 谐空心光束起到冷原子的收集、聚焦和导引作用 而 消逝波光场起到导引和准直作用. 类似地,由于光纤 输出端附近的空心光束和光纤内的消逝波光场均具 有非常高的强度梯度,故当引入一附加的弱抽运光 束时,该漏斗还具有对导引原子的 Sisyphus 冷却效 应. 理论研究表明, 该方案的原子漏斗效率可达到 95%.显然,这样的原子漏斗在超高分辨光谱学、原 子光刻和原子光纤器件研制等方面有着重要的应 用.

图 2 采用蓝失谐空心光束的原子漏斗

此外 还有其他的一些光学漏斗,如 1997 年 Ito 等人提出的采用蓝失谐消逝波光场的原子漏斗^[6]等.

3.2 静磁原子漏斗

由于在上述光学原子漏斗中存在着或多或少的 导引原子的自发光子散射效应,特别是在红失谐的 聚焦高斯光束原子漏斗中,存在着较大的光子散射 速率,从而导致原子相干性的严重丢失.为了彻底消 除原子的光子散射效应,也为了解决磁导引中冷原 子的有效装载问题,近年来人们发展了各种静磁原 子漏斗方案^[78].由于篇幅关系,这里仅介绍一种采 用载流导线的静磁原子漏斗方案.

2000 年 Hinds 小组为了实现冷原子从毫米尺 寸的磁光阱到亚毫米空心磁管的装载 利用4根向 外倾斜的载流导线所产生的锥型四极磁场构成了一 个原子漏斗[8] 其原子漏斗与导引的实验装置如图 3 所示. 他们在一根长度为 25mm 的硅管上开了 5 个直径为 261 µm 的圆柱形小孔,其中一个小孔开在 硅管的中心,用于实现冷原子的静磁导引,另外4个 小孔对称地开在中心圆孔的四周,距x,y轴均为 522 µm ,用于固定导线. 在实验中,他们将一根载流 导线依次穿过四周的小孔,并将硅管上方的导线部 分安排为向外发散的倒金字塔形. 当导线通电时 相 邻两根导线中电流大小相等、方向相反,在硅管中形 成了一个四极磁场分布(即空心磁管),而在硅管上 方形成了一个向上发散的锥型四极磁场(Taper 型 空心磁管),处于弱场搜寻态的冷原子从磁光阱释 放后 在重力和磁偶极力的作用下将在磁漏斗中经 多次来回反射 最后将被会聚进入硅管中心的空心 磁管.显然,起漏斗作用的是硅管上方的4根发散型 载流导线.

图 3 采用载流导线的静磁原子漏斗

最近,人们采用类似的具有 Taper 形截面的四 根载流导线构成的静磁原子漏斗,实现了冷原子的 有效装载及其磁导引^[15—18]. 此外,2002 年,印建平 等人还提出了一种新颖的采用 V 型和 U 型载流导体的磁导引原子漏斗方案^[9,19],这些是易于蚀刻在 原子芯片上的原子漏斗方案,在集成原子光学中有 着广阔的应用前景.

3.3 磁光原子漏斗

典型的磁光原子漏斗方案主要有采用三维光学 Molasses 技术的磁光原子漏斗^[1]和采用二维磁光压 缩技术的原子漏斗^[2-6,20]等,这里仅介绍前一种磁 光原子漏斗.

1990 年 ,Chu 小组首先提出并实验研究了一种 采用三维光学 Molasses 技术的磁光漏斗方案,实验 方案如图4所示[1].在图4中,一个回形针状的载流 线圈产生了一个二维的四极磁场 ,二对圆偏振的椭 圆高斯光束(二维 Molasses 光束)与四极磁场结合 而构成二维磁光 Molasses 用于原子的横向冷却、囚 禁与压缩 :一对线偏振的光强相等但频率略为不同 的一维 Molasses 光束构成了一维运动 Molasses 光 束,用于冷却原子,并产生一慢速运动的冷原子束. 在实验中,为保证冷原子束的输出,一方面,原子束 与四极磁场轴线的水平夹角约为7°,在竖直方向上 偏高0.4 cm;另一方面,一对相向传输的二束 Molasses 光束的激光频率间保持一很小的差值,以 构成一维运动光学凝胶 使冷原子获得一个沿着高 频光束传播方向的大小为 $c\Delta\nu/2\nu$ 的初速度 以实现 原子束的产生及其传输.实验获得了纵向速度为 270cm/s、温度约 200 μK 和密度为 10⁸ 原子/cm³ 冷 钠原子束 其亮度比入射时提高了3个量级 由于没 有采用磁光压缩技术 故原子束的亮度提高不多.同 时冷原子的收集效率不高.仅为10%左右.

图 4 三维 Molasses 磁光原子漏斗

此外,Yu 等人设计并研究了一种采用二维磁光 压缩技术的原子漏斗方案^[5],Ertmer 等人采用倾斜 的二维磁光压缩技术对实验装置进行了改进,获得 了温度低达 11.5μK 的 Ne 原子束^[4].

4 原子漏斗的潜在应用

4.1 高亮度超冷原子束的实验产生

原子漏斗的最直接应用就是产生一束准直性好 的高亮度超冷原子束[1-5]. 例如:1990 年, Chu 小组 采用三维光学 Molasses 技术的磁光漏斗方案,获得 了温度约为 200 µK 和密度为 10⁸ 原子/cm³ 的钠原 子束^[1];1997 年 ,Ertmer 等人获得了接近光子反冲 速度极限(2v_{rec})和密度为5×10⁸ 原子/cm³ 的冷 Ne 原子束^[4];1998 年, Verdenbregt 等人的理论研究表 明,采用优化的二维磁光压缩技术的原子漏斗方案, 可产生一束原子通量达 2 × 10¹¹ 原子/s 的冷 Na 原 子束和通量为 8.5×10^{11} 原子/s 的冷 Rb 原子束^[21]; 2000 年 "Riis 等人采用二维磁光漏斗方案获得了原 子通量约为 7.3 × 10⁸ 原子/s 和温度为 25 µK 的冷 原子束^[22] 2001 年 "Ihe 小组采用由圆锥形空心反 射镜构成的单束磁光原子漏斗方案,产生了一束温 度为 380μK 和通量为 2.2 × 10¹⁰ 原子/s 的脉冲冷 Rb 原子束^[23];最近,Kohel 等人采用类似的单束磁 光原子漏斗方案 获得了一束通量为 2.2 × 10⁹ 原子 /s、发散角为 15mrad 和亮度为 1.2×10¹³原子/s/sr. 的强冷 Cs 原子束^[24]. 显然,如此高亮度的超冷相干 原子束在原子喷泉钟及其射频光谱学^[25]、原子干涉 仪^[26]、原子全息学^[27]和原子光刻术^[28]等方面都有 着重要的应用.

4.2 中空光纤中冷原子的激光导引

原子导引是中性原子精密操控的核心技术之 一,也是原子光学实验中必不可少的关键技术之一. 目前原子导引技术可分为冷原子的激光导引和磁导 引两种^[29,30].其中激光导引又可分为采用中空光纤 和采用空心光束的激光导引[29].尤其是在采用中空 光纤的激光导引中 ,无论是利用红失谐高斯模式的 激光导引 还是利用蓝失谐 Doughnut 模式的消逝波 导引 均需要采用原子漏斗来实现冷原子从磁光阱 到中空光纤的有效装载. 1995 年 .Cornell 小组采用 一束聚焦的红失谐高斯光束原子漏斗,实现了 Rb 原子在中空光纤中的激光导引,实验装置如图 5 所 示^[12].聚焦高斯光束在中空光纤中激发 EH₁₁模并 传播至探测室.由于 EH₁₁模的直径为 22μm,小于光 纤的中空直径为 40µm,故中空光纤内壁的范德瓦 尔斯力和量子隧穿效应等导致的原子损失可以忽略 不计,但由于自发辐射光子对原子的横向加热,使得 该类激光导引的效率较低 仅为2%-3%.

图 5 采用红失谐高斯光束漏斗实现的原子激光导引

1996 年,该小组又实现了中空光纤中冷原子的 蓝失谐(LP₀₁模)消逝波导引^[31].最近,Hayashi 等人 采用类似方案实现了 Cs 原子在中空光纤中的高斯 模式导引,并研究了导引速率的光学势调制效 应^[32].此外,若采用蓝失谐空心光束的原子漏斗,则 可实现中空光纤中 LP₀₁模式的蓝失谐消逝波导 引^[33].

4.3 冷原子磁导引的实验研究

另一类原子导引方案是采用管状磁场分布的磁 导引技术^[30]. 2000 年, Hinds 小组采用 4 根载流导 线构成的静磁漏斗方案,实现了冷原子从毫米尺寸 的磁光阱到微型(~100µm)磁管的有效装载,实现 了冷原子的静磁导引,并研究了冷原子在磁漏斗中 的动力学反射^[8].2001 年, Teo 等人采用类似的磁漏 斗方案实现了冷原子的磁导引,实验装置如图6所 示. 研究结果表明 约为 10⁵ 个冷 Rb 原子被有效装 载进入磁导引管 相应的漏斗效率约为 5% 而且入 射原子束的直径被压缩了3个数量级[15].2002— 2003 年 Guery - Odelin 小组采用 Taper 型静磁漏斗 方案,实现了冷 Rb 原子的长距离(40cm)磁导引相 应的漏斗效率达到 30% ,磁导引的原子速率为 3 × 10⁸ 原子/s^[16,17];2004 年, Guery - Odelin 小组改进 了磁漏斗和磁导引实验装置,实现了长达4.5m的 磁导引^[18]. 在实验中,他们首先通过磁漏斗获得了 初始通量为 7×10^9 原子/s 和初始温度为 $400 \mu K$ 的 入射原子束 洪次 通过磁导引原子束的射频蒸发冷

图 6 采用静磁原子漏斗实现的冷原子磁导引

却和有效弹性碰撞(热平衡),研究了导引原子束相 空间密度的进一步提高,并讨论了实现低维玻色 – 爱因斯坦凝聚(BEC)的可能性.

此外 原子漏斗在中性原子的激光偏振梯度冷 却^[34]、消逝波冷却^[6]、空心光束冷却^[10,31,35]、磁光囚 禁^[36]、原子束聚焦^[37]、喷泉原子钟^[29]与集成原子光 学及其原子芯片^[38]等方面均有着广阔的应用前景.

参考文献

- [1] Riis E et al. Phys. Rev. Lett. , 1990, 64(14):1658
- [2] Nellessen J et al. Opt. Commun. , 1990 , 78(3/4): 300
- [3] Scholz A et al. Opt. Commun. , 1994 , 111 : 155
- [4] Schiffer M et al. Opt. Commun. , 1997 , 134 : 423
- [5] Yu J et al. Opt. Commun , 1994 , 112 :136
- [6] Ito H et al. Appl. Phys , Lett. , 1997 , 70(19):2496
- [7] Yin J et al. Phys. Rev. ,1998, A57(3):1957
- [8] Key M et al. Phys. Rev. Lett. , 2000 , 84(7):1371
- [9] Liu N et al. Eur. Phys. J. , 2002 , D19 :137
- [10] Yin J et al. Prog. Opt. , 2003 , 45 : 123
- [11] Schmiedmayer J. Phys. Rev. , 1995 , A52(1): R13
- [12] Renn M J et al. Phys. Rev. Lett. , 1995 , 75(18): 3253
- [13] Yin J et al. Opt. Commun. , 1997 , 138 :287
- [14] Ni Y et al. J. Opt. B : Quantum Semiclass. Opt. , 2003 , 5 (3) : 300
- [15] Teo B K et al. Phys. Rev. , 2001 , A63(3):031402-1
- [16] Cren P et al. Eur. Phys. J. , 2002, D20:107
- [17] Roos C F et al. Laser Phys. , 2003 , 13(4):605
- [18] Lahaye T et al. Phys. Rev. Lett. , 2004 , 93(9):093003 1
- [19] Liu N et al. Chin Phys. , 2003 , 12(9):955
- [20] Swanson T B et al. J. Opt. Soc. Am. , 1996 , 13(9):1833
- [21] Verdenbregt E J D et al. Opt. Commun. , 1998 , 147 : 375
- [22] Chen H et al. Appl. Phys. , 2000 , B70(5):665
- [23] Kim K H et al. Phys. Rev. , 2001 , A64(1):013402 1
- [24] Kohel J. M et al. J. Opt. Soc. Am. , 2003 , 20(6):1161
- [25] Kasevich M A et al. Phys. Rev. Lett. , 1989 , 63(6):612
- [26] McIntyre D H et al. SPIE , 1997 , 2995 :68
- [27] Fujita J et al. Nature , 1996 , 380 : 191
- [28] McClelland J J et al. Science , 1993 , 262 : 877
- [29] 胡建军等. 物理,2001,30(10):635[Hu J J et al. Wuli (Physics) 2001,30(10):635(in Chinese)]
- [30] 刘南春等. 量子电子学报 2002, 19(5):385[Liu N C et al. Chinese Journal of Quantum Electronics 2002, 19(5) 385(in Chinese)]
- [31] Renn M J et al. Phys. Rev. , 1996 , 53(2): R648
- [32] Yin J et al. J. Appl. Phys. , 1998 , 85(5) : 2473
- [33] Hayashi S et al. Phys. Rev. , 2003 , A68(5):053408-1
- [34] Kuppens S et al. Phys. Rev. , 1998 , A58(4): 3068
- [35] Morsch O et al. Opt. Commun. , 1998 , 148 : 49
- [36] Williamson R S et al. Opt. Express , 1998 , 3(3):111
- [37] Schiffer M et al. Appl. Phys. , 1998 , B67 : 705
- [38] Folman R et al. Adv. At. Mol. Opt. Phys. , 2002 , 48 : 263