内核/壳层微结构上应力驱动的 三角和斐波纳契数花样*

李超荣 黄娆 张晓娜 曹则贤*

(中国科学院物理研究所 北京 100080)

摘 要 自然界中三角和斐波纳契数的叶序花样随处可见. 通过控制几何条件以及冷却之后产生的应力,这些 花样能在 Ag 内核/SiO_x 壳层微结构(约10μm 大小)上予以实现. 在这种内核/壳结构表面上,大小形状十分一致的 小球通过自组装是形成斐波纳契数花样(我们观察到5×8,8×13和13×21 三种)还是三角花样,取决于基座面的 几何构形. 作者工作的意义在于揭示了在适当的几何约束下,自组装形成的花样是总应变能最小的结果. 这对叶序 花样的形成来源提出了一种非遗传的机理. 此外,作者的研究表明,高度有序的、甚至含有内禀缺陷的微结构可以 通过应力工程在大面积范围内同时得到.

关键词 应力工程,内核/壳层微结构,三角花样,斐波纳契数花样

Self-assembly on core/shell microstructures driven by stress into triangular and Fibonacci number patterns

LI Chao-Rong HUANG Rao ZHANG Xiao-Na CAO Ze-Xian[†] (Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China)

Abstract Triangular and Fibonacci number phyllotactic patterns in nature have attracted much interest amongst scientists in multidisciplinary fields. By controlling the geometry along with the stress developed during cooling , these patterns can be reproduced on the surface of Ag core/SiO_x shell microstructures. The significance of our work lies in the revelation that , under proper geometrical constraint , the various patterns can develop through minimization of the strain energy. This provides a physical mechanism without involving the growth dynamics of the formation of phyllotactic patterns. Moreover , it demonstrates that highly-ordered microstructures , even with desirable defects , can be prepared across large areas simultaneously by stress engineering. **Keywords** stress engineering , core/shell microstructure , triangular pattern , Fibonacci number pattern

1 引言

实现给定花样的、高度有序的、形状尺寸均一的 微纳米结构的生长,对于材料学家而言是一个巨大 的挑战.自组装是达到这一目的最有希望的方式.它 主要的优点在于免除了对高精度加工设备的需求 ^[12].于是,各种途径被用来实现自组装,其中特别 是胶体化学的方法获得了非常有益的结果^[2—5].然 而,对于微结构的制作,尤其是当涉及到纯度和均匀 性控制的时候,应用宏观尺度的物理原理要比依靠 分子间作用力更具可行性.近来,在制造大范围有序 结构上,应力工程显示出较大的潜力^[6—10].众所周 知,在给定的规律下,一个现象会由于几何约束的不

† 通讯联系人. Email: zxcao@ aphy. iphy. ac. cn

^{*} 国家自然科学基金(批准号 60306009 50472070 50272081),国 家高技术研究发展计划(批准号 2003 AA0270)、国家重点基础 研究发展计划(批准号 2002 CB613500)资助项目 本文相关内容已发表在 Science 2005 309 909 2004 - 06 - 24 收到初稿 2005 - 07 - 13 修回

同表现出不同的花样^{11—13]},但目前应力工程通常只 被用于平的支撑面上,而对于在其他几何条件下应 用的可能性还没有足够的尝试.

可以想象,花托的几何形貌在决定生长花样的 问题上,亦即如何高度有序地摆放植物的小花朵、萼 片以及种子等,所起的作用是非常重要的^[14,15].通 过仔细的观察可以证实这一想法. 三角花样 即六角 密堆积 出现在大的平面上. 例如 ,某些仙人掌中部 刺的排布就近似于完美的三角格子.在球形花托上, 三角花样会具有一些五角的或者七角的缺陷,以满 足凸多面体的欧拉定理^{16]}. 值得注意的是,球形花 托上的生长单元一般是同步生长的 例如蒲公英上 的小花朵. 许多植物的花托具有圆盘或者锥形表面, 并且生长单元是依次从一个生长点发生的,它们通 常表现出斐波纳契数花样.最常见的例子是向日葵、 雏菊以及菠萝. 它们的种子或鳞片的排列花样可以 被两个相邻的斐波纳契数描述 ,一个标记顺时针螺 线数,一个标记逆时针螺线数.在向日葵中,其花样 可以是 13 × 21 直到 89 × 144(想象一下这个巨大的 向日葵花托上有多少粒葵花籽?). 当然,自然界中 的花样可能和上述花样有些偏差,这要归咎于花托 的不规则、植物本身的向光性以及其他生长条件方 面的因素. 这些引人入胜的排列花样成为一个谜 激 励着人们对叶序的研究,并提出了许多不同的有关 叶序花样的产生机制. 早期,有人认为这是为了竞争 有限空间:也有人从审美的角度考虑,但是这种令人 愉悦的和谐应该具有更深层次的意义.在过去的几 十年里,叶序理论包含了越来越多的化学和物理内 容. 最低能量原理最接近问题的核心^[17]. 可是我们 认为应该明确指出具体的能量形式,并且将几何判 据与理论融入到同一框架下. 如果能在植物界以外 找到遵从更一般性的原理的这种类叶序的花样 将 对问题的解决带来巨大的帮助.

2 实验

在利用应力工程制作大尺度的花样结构的实践 中,我们在初期高温生长而后冷却的 Ag 内核/SiO_x 壳层微结构上由应力驱动得到了自组装的三角以及 斐波纳契数花样. 能量色散 X 射线谱学确定 *x* 是一 个比 2.0 略小的值. 生长开始时衬底保持在 1270K. 此温度特意选在略高于银的熔点(1234.8K)但远低 于 SiO₂ 的熔点(1883K)处. 由于 Ag 同硅氧化物互 溶性特别差,因而形成了 Ag 内核/SiO_x 壳层结构. 根据对衬底的浸润情况,会形成球形的或略扁平的 盘状液滴. 冷却后,由于材料之间热膨胀系数的极度 失配,壳层中会产生很大的压应力. 考虑到银的热膨 胀系数(1100K) α_{Ag} = 27.1×10⁻⁶,而 α_{SiO_2} = 0.45× 10^{-6[18]}. 当温度下降为 $\Delta T \approx$ 1000K,从关系式 σ = *E* $\Delta \alpha \Delta T/(1 - \nu)$ 可以计算出在前屈曲状态中的压力 达到 2.5GPa,其中 $\Delta \alpha = \alpha_{Ag} - \alpha_{SiO_2}$, *E* 和 ν 分别是杨 氏模量和泊松比^[7]. 对 SiO₂ 而言, *E* = 75GPa, ν = 0.17^[18].

为避免温度不均匀性对制备屈曲前的内核/壳 层结构的不良影响 ,冷却速率必须小心控制. 大的冷 却速率会导致银核收缩太快,只能观察到压瘪了的 外壳. 在合适的冷却速率(4 分钟内降至 800K 或更 慢)下,巨大的应力聚集在仍附着于银核的SiO_壳 层内 更重要的是它具有一个连续的凸的表面. 这样 一个严重受力的壳层对于具有最小应变能的屈曲结 构的形成是不稳定的. 应力不均匀也将改变壳层上 晶核形成的势垒以及随后在低过饱和度下生长的扩 散率. 这样获得的凝聚物(事实上是一些同样的 Ag 内核/SiO, 壳层结构的小球)的分布再现了应力的 花样.因此,我们观察到了在初级内核/壳微结构表 面上由小球状的节点形成的镶嵌花样.图 1(a)--(c)所示为一些典型的直径 10μm 左右的 Ag 内核/ SiO, 壳层的扫描电子显微镜图像. 它们都具有近球 面的表面 大小和形状非常均匀的小球以三角花样 排布于其上. 应力集中点区的密堆积花样分布 表明 初级表面努力使应变能最小,但有限的、非平面的几 何约束为应力花样加入了更强的限制. 由于三角形 不能铺满球形表面,三角花样不可避免地会包含一 些缺陷,即五重或七重的节点.同样的自组装花样 在自然界普遍存在于近似球形的头状花序中[图1 (d)].

假设缺陷只有零星的分布,则在球形表面上的 三角花样可以仅由一个参量δ描述δ是近邻节点 之间的弧间距. 概略地说,弧间距δ与平面几何中屈 曲模态的波长相联系,正比于材料挠度的平方 根^[7 20]. 因为球半径以 R^2 的形式出现在应变能的表 达式中,而应力节点数目正比于 R^2/δ^2 ,所以三角花 样中的弧间距与初级球形表面的直径关系不大. 与 此相对,壳层硬度 D 与厚度t 有如下关系 $D = Et^3/$ [12(1 – ν^2)]. 于是壳层越厚,花样的弧间距δ越 大. 跟预期情况一样,在清晰度最佳的图像中观察到 了更密集的花样[图1(a)],它具有最薄的 SiO_x 层. 在图1(b)—(c)中,厚的 SiO_x 层引起了严重的

图 1 近似球形的基座上三角花样的自组装 (a)Ag 内核/ SiO_x 壳层直径 $D \approx 9.1 \mu m$ 小球之间的弧间距 $\delta \approx 0.82 \mu m$; (b) $D \approx 6.6 \mu m \delta \approx 1.0 \mu m$ (c) $D \approx 11.5 \mu m \delta \approx 1.78 \mu m$,图 中小球表现出完美的三角形格子 (d)图为具有密堆积小花 的 Succisa Pratensis Moench 花头以供对照

荷电效应 ,所以图像清晰度较差. 图 1(c)中初级内 核/壳也具有很大的直径 ,上面的三角花样间距最 大 δ = 1.78 μ m.

在 Ag 内核/SiO_x 壳层和衬底浸润较好的情况 下,它采取了一种扁平的圆盘状 小球因此自行排列 成清晰的螺旋状.在一个横向尺寸为 9.5 μ m 左右的 内核/壳层上[图 2(a)和(b)] 92 个小球排成 5 个 逆时针螺旋和 8 个顺时针螺旋,从而形成了 5 × 8 的 斐波纳契数花样.图 2(c)中,内核/壳层的横向尺寸 约为 18 μ m,小球总共约 230 个,形成的斐波纳契数 花样为 13 × 21,正如图 2(d)所示的仙人掌前端的 小花.

有时候物理能通过简单的定律揭露复杂问题的 本质 ;我们期望对于叶序问题也是这样. 注意到这里 的应力是花样形成过程中唯一的驱动力 ,并且花样 仅仅依赖于初级内核芯/壳层结构的几何构形. 虽然 在自然界中 ,斐波纳契数花样一般发生在依次生长 的情形中 ,而密堆积花样多见于植物生长单元大致 同步的情形 ,但观察到的花样对几何条件的依赖使 得我们猜想是在指定空间内应变能取最小值这一原 理决定了植物生长单元的排列. 均匀花盘上满足最 小应变能的排列与几何意义上的个体间的空间竞争 是等价的. 但是 ,尽管植物必须不断地调整排列方式 以保持应变能尽可能小 ,最终的排列花样却不一定 取决于生长的动力学过程.

这里描述的方法是一个关于在弯曲表面上生长 有序花样的一般性原理. 亚微米大小的金属内核/半

图 2 盘状基座上形成的斐波纳契数花样.小球在横向尺寸 ~9.5μm的盘状 Ag 内核/SiO_x 壳层表面上自组装 构成 8 个 顺时针方向螺旋(a)和 5 个逆时针方向螺旋(b);在(c)图 中 将标记点作为螺旋末端,在此~17.8μm 大小的盘状表面 上分布的~230 个小球构成 13 个逆时针螺旋和 21 个顺时针 螺旋,与(d)中的仙人掌花头相似

导体壳层小球自组装花样,考虑到其大小和形状的 均匀性,能够在光子学、等离子体激元电子学、特别 是可折叠电子学中找到诸多潜在的应用.这里,电子 耦合是由颗粒间共价键半导体的外膜产生的.此外, 不像平面几何那样,花样受限于平移对称性,其中缺 陷要么随机出现要么需要特意地引入^[2],球形表面 上三角花样具有的缺陷是内禀的.而斐波纳契数花 样,不论排布在平坦的还是弯曲的表面上,都使我们 联想起平面上的 Penrose 排布,它为理解5次和10 次对称性准晶提供了基础.这二者都可能对光子晶 体的设计有所启发.

3 结论

我们的研究表明高度有序花样能在内核/壳层 微结构上通过可控冷却引入应力从而驱动自组装而 产生.得到特定花样的关键是控制初级内核/壳层结 构的几何以及刚性壳层的厚度.最终花样的结构可 以用给定几何约束下应变能最小的原理来解释.将 此处描述的无机材料的内核/壳层结构上花样对几 何关系的依赖与在植物中的观察联系起来,我们可 以猜测神奇的叶序的起因与此具有相同的原理:在 给定几何形貌的花盘上,受生长引起的应力的驱动, 植物生长单元自行排列成满足应变能最小的方式. 此外,我们展示了一种大面积大量生长介观结构,以 及同时引入内禀'缺陷'的工艺. 这里的结果可以用 来对组装过程中的花样进行控制,或者在此基础上 利用应力工程设计制作更新奇的花样.

参考文献

- $\left[\begin{array}{cc}1\end{array}\right]$ Bowden N et~al. Nature , 1998 , 393 : 146
- [2] Vlasov Y A , Bo X Z , Sturm J C *et al.* Nature , 2001 , 414 : 289
- [3] Aggarwal S et al. Science , 2000 , 287 : 2235
- [4] Hill J P et al. Science , 2004 , 304 : 1481
- [5] Su P Y et al. Appl. Phys. Lett. , 2004 , 84 : 3480
- [6] Adelung R et al. Nature Materials , 2004 , 3 : 375
- [7] Chen X, Hutchinson J W. Scripta Materiala, 2004, 50:797
- [8] Yin Y D et al. Science , 2004 , 304 :711
- [9] Zhang X N , Li C R , Zhang Z. Materials Lett. , 2004 , 58 : 1917
- [10] Lee H et al. Appl. Phys. Lett. , 2001 , 78 : 105
- [11] Cerda E , Mahadevan L. Phys. Rev. Lett. , 2003 , 90 :074302
- [12] Huck W T S et al. Langmuir , 2000 , 16 : 3497
- [13] Zhang H L , Okayasu T , Bucknall D G. European Polymer J. , 2004 ,40 :981
- [14] Adler I , Barabe D , Jean R V. Ann. Botany , 1997 , 80 : 231
- [15] Weyl H. Symmetry. Princeton : Princeton University Press , 1952
- [16] Cromwell P R. Polyhedra. Cambridge : Cambridge University Press ,1997
- [17] Douady S, Couder Y. Phys. Rev. Lett., 1992, 68:2098
- [18] Kaye G W C , Laby T H. Tables of Physical and Chemical Constants. Sussex : Longman Science & Technology , 1995
- [19] Hanbücken M, Deville J. Stress and Strain in Epitaxy : Theoretical Concepts ,Measurements and Applications. Amsterdam : Elsevier, 2001
- [20] Timoshenko S P , Gere J M. Theory of Elastic Stability(2nd ed.). New York : McGraw – Hill Book Company , INC. , 1961

作者简介

李超荣,男,生于 1963 年 5 月.分别于 1985 年和 1987 年在清 华大学获学士和硕士 学位;1990 年 12 月于 中国科学院物理所获 博士学位;1991 年英国 Durham 大学物理系访

问学者;1994—1996 英国 Durham 大学物理系博士 后,高级研究助理;2000 年日本东北大学做高级访 问学者 2002 年日本东北大学客座研究员;2002 年 澳大利亚 Curtin 大学和 Queensland 大学高级访问学 者.长期从事纳米结构、半导体低维材料以及晶体生 长的研究.在国内外学术刊物和国际会议上发表学 术论文 80 多篇.现任职于中科院物理研究所电镜实 验室.

曹则贤,男,生于 1966年3月.分别于 1987年和1990年在中 国科技大学获物理学 学士和硕士学位;1997 年获德国 Kaiserslautern 大学物理做博士学位; 1997年—1998年德国 Kaiserslautern 大学物理

系做博士后.1998年加入中科院物理所,现任职于物理研究所表面实验室.长期从事表面分析、薄膜生长以及微结构量子力学性质的研究.在国际重要学术刊物上撰写文章近40篇.在《物理》杂志上撰写文章近十篇.

封 面 说 明

物理和数学是理解生长与形状(growth and form)的科学基础. 有生命世界与无生命世界中花样的美妙 对应暗示存在着普适的发生机制,即某个物理因素在给定几何约束下的表现. 左上图, 球状花序; 左下图, 球 状内核/壳层上的应力驱动生成的花样(球径:~7.7μm,颗粒间距:~1.1μm). 二者皆为近似球面上的三角 花样,因此可见七边形缺陷的出现. 右上图为 SV40 病毒,右下图为46 个排斥粒子的 Thomson 问题的解. 此二 者皆为完美球面上的三角花样,因此只见五边形缺陷的出现. 中上图的仙人掌和中下图应力驱动生成的花样 皆为盘状基座上的13×21 斐波纳契数花样(直径:~18.6μm,颗粒间距:~1.22μm). 背景为花样的低倍 像.

(中国科学院物理研究所 李超荣 曹则贤)