量子点红外探测器的特性与研究进展*

张冠杰[†] 舒永春 姚江宏 舒 强 邓浩亮 贾国治 王占国 (南开大学物理科学学院量子材料与器件研究室 天津 300457)

摘 要 半导体材料红外探测器的研究一直吸引人们非常广泛的兴趣. 以量子点作为有源区的红外探测器从理 论上比传统量子阱红外探测器具有更大的优势. 文章讨论了量子点红外探测器几个重要的优点,包括垂直入射光 响应、高光电导增益、更低的暗电流、更高的响应率和探测率,等等. 此外,报道了量子点红外探测器研究中一些最 新的实验结果. 在此基础上,分析了现存问题,并提出了进一步提高器件性能的几种可能途径. 关键词 量子点红外探测器 暗电流,光电导增益,响应率,探测率

The properties and development of quantum-dot infrared photodetectors

ZHANG Guan-Jie[†] SHU Yong-Chun YAO Jiang-Hong SHU Qiang DENG Hao-Liang JIA Guo-Zhi WANG Zhan-Guo (Quantum Materials and Devices Lab , Department of Physics , Nankai University , Tianjin 300457 , China)

Abstract There is great interest in semiconductor infrared detectors with improved performance. Quantum dot infrared photodetectors (QDIPs) ideally have several advantages over quantum well infrared photodetectors. We discuss the theoretical advantages of QDIPs including their normal incidence response, lower dark current, higher responsivity and detectivity, etc. The newest experimental results in this area are also reported. Finally we point out some approaches that can further improve the capabilities of such devices.

Keywords quantum dot infrared photodetector , dark current , photoconductive gain , responsivity , detectivity

1 引言

对中红外(MIR)和远红外(FIR)辐射的探测在 很多应用领域,包括远距离传感、热成像、夜视、空间 定位等,都具有重要的意义^[1].随着分子束外延 (MBE)技术的不断发展,过去一段时期里出现了各 种利用半导体异质结中的量子效应工作的新型红外 探测器,例如量子阱红外探测器(QWIP).利用光激 发载流子在量子阱子带间的跃迁原理,QWIP已经 显示出广阔的前景并得到了广泛研究.

然而,量子阱红外探测器也有其局限性.由于跃 迁选择定则的限制,它们并不能直接探测垂直入射 光,并且一般在红外区只有比较窄的响应^[2].最近 几年,一种更有前景的新型红外探测器——量子点 红外探测器(QDIP)受到了研究者越来越多的重视. 它利用自组织生长的量子点材料作为有源区,有望 克服量子阱红外探测器的上述几个缺点.本文中,我 们从理论上探讨了量子点红外探测器的主要优势, 并且报道了这方面最新的实验结果.

2 QDIP 理论上的预期优势

一般来讲,量子点红外探测器从结构和原理上 都类似于量子阱红外探测器^[3,4].如图1所示,电子

† 通讯联系人. Email : centaur@ mail. nankai. edu. cn

 ^{*} 国家自然科学基金(批准号 60476042)资助项目
2004 - 10 - 28 收到

从发射极被激发出来,可能被量子点所俘获,或者漂移到集电极.当红外辐射光子激发之后,发射出的电子在外加偏压形成的电场作用下向集电极漂移,形成光电流.

图1 量子点红外探测器光电流收集原理示意图

与量子阱红外探测器相比,量子点红外探测器 由于更长的载流子俘获和弛豫时间,应具有更低的 暗电流和更高的光电响应^[5].理论预言,量子点红 外探测器具有下述优点:

(1)对垂直入射光敏感

在量子点中,三维限制效应导致其态密度函数 非常特殊,为δ函数形式.这种态密度函数接近于原 子,并由此会引起光电性质的强烈改变.其中最重要 的一点就是量子点红外探测器对垂直入射光的响 应.由于量子点中的三维限制效应,任何偏振的红外 光都可以诱导子带间跃迁的发生.

(2)可达到更宽的光谱响应

自组织量子点一般尺寸、组分、应力都具有不均 匀性,这使得量子点红外探测器有一个更大的响应 范围.由于分立的态密度函数,依据量子点存在的能 态,电子将遵守一系列的可能跃迁.这些跃迁对探测 产生影响并导致一个更大的均匀展宽.在很多情况 下,与响应带宽直接成比例的整个波长响应也应该 会更大.

我们可以改变生长条件以控制探测器的探测范 围. 例如 改变生长温度可用于调整点的大小和形 状 改变应变材料淀积厚度可以用于控制量子点的 密度^[6]. 势垒材料、高度、厚度的选择也可以结合量 子点尺寸的改变以设置探测波段.

(3)长的激发电子寿命

当载流子被激发出来后,可能有多种俘获和弛 豫机制发生作用.但在量子点中,如果能级间距大于 声子能量时(即出现"声子瓶颈"效应),不仅电子 – 空穴散射很大程度上被抑制,声子散射也应被禁戒, 电子 – 电子散射将成为主要的弛豫过程^[7].由于电 子弛豫足够慢,可预期达到更长的载流子寿命.在 pn 结激光器的测试中得到的量子点中载流子的弛 豫时间约为 30—50ps,比量子阱的 1—10ps 要长.考 虑到 QDIP 中空穴数量远远小于电子数量,激发载 流子的寿命应超过 1ns^[8].所以,如果理论预言的声 子瓶颈效应能在量子点红外探测器中充分地实现, 长的激发电子寿命将直接导致更高的工作温度、更 低的暗电流和更高的探测率.

(4)更低的暗电流

暗电流可以表示为

$$j_{\text{dark}} = evn_{3D}$$
 ,

其中 v 为漂移速度 , n_{3D} (∝ exp($-E_a/K_bT$))为连 续态的电子密度 , E_a 为激发能量 ,等于势垒顶部到 量子点内费米能级的能距.

暗电流的组成包括热激发电流、隧道电流和热 辅助隧道电流等.与量子阱探测器类似,量子点红外 探测器中暗电流最主要的产生机制仍然是量子点中 的受限电子的热发射⁹¹.载流子寿命的增加使电子 热发射得到抑制,使暗电流应处于较低的数量级.通 过降低掺杂浓度及使用异质结势垒作为接触层等手 段,暗电流有望进一步降低.

(5)更高的光电导增益

在探测器中,增益可认为是激发载流子寿命与 载流子迁移时间的比值或者所有收集的载流子与所 有激发的载流子之比值¹⁰¹.量子点中起主导作用的 光电导增益g可以表示为

$$g = \frac{1 - \frac{1}{2}p_{\rm c}}{PNp_{\rm c}}$$

其中 p_e 为激发载流子的俘获几率. N 为量子点层数. 量子点阵列的垂直入射响应带来了发射极通过 量子点阵列到集电极的额外电子发射. 由于激发载 流子寿命的增加,其俘获几率大大降低,这些都使 ODIP 的光电导增益可以显著地增加.

(6)更高的响应率

对于红外探测器而言,峰值响应率是非常重要的指标,表示为: $R_{peak} = \eta g \frac{e\lambda}{hc}$, η 对应吸收量子效率,即光激发载流子从量子点中逃逸出来的几率, hc/λ 为峰值波长的能量,乘以有效光子辐照得到的有效辐照单位是 W. 理想情况下,由于无表面反射, 认为 QDIP 中每个光子都得到吸收,此时 $\eta = 1$. 而 QWIP 由于无法探测正入射光,可认为 $\eta = 0.5$. 所以 理论上量子点探测器应具有比量子阱探测器更高的 峰值响应. 加之增益 g 的增大,量子点系统的红外响 应率将随之上升.

(7)更高的探测率

探测器的另一个重要指标是探测率 D^{*},表示为

$$D^* = \frac{R\sqrt{A\Delta f}}{I}$$

式中 *R* 是探测器的响应率 , *A* 是探测器的表面积 , Δf 是测量带宽 , *I*_n 是产生复合的噪声电流 ,表示为 $I_n^2 = 4eIg\Delta f(1 - p_e/2)$. 随着 *R* 的增加和 *I*_n 的降 低 ,探测器的探测率将会变得更高.

3 QDIP 的最新研究进展

一般而言,量子点红外探测器包括两种基本的 器件结构^[11]. 垂直输运结构和横向输运结构. 垂直 型量子点红外探测器[图 2(a)]通过载流子在顶部 接触层和底部接触层之间的垂直输运来收集光电 流,而横向型量子点红外探测器[图 2(b)]中,载流 子在两个顶部的欧姆接触之间高迁移率通道中的输 运收集光电流.

图 2 量子点红外探测器两种基本结构示意图 (a)垂直输运型(b)横向输运型

基于上述的基本结构 ,人们提出了各种设计方 式 ,以控制探测器的相应范围 ,提高了器件性能.

3.1 包含电流阻塞层的红外探测器

好几个研究小组都报道了利用 AlGaAs 势垒以 阻塞暗电流的结构设计^[12,13]. Wang 等人在有源区 结构中引入了一层薄的 AlGaAs 电流阻塞层,如图 3 所示.

图 3 AlGaAs 电流阻塞层示意图

他们认为 GaAs 优良的输运性质会诱导大的暗 电流. 点之间的空间可为载流子提供良好的输运通 道. 引入一层 Al_xGa_{1-x}As 薄层 ,目的是降低载流子 的输运能力. 通过控制 AlGaAs 层的厚度 ,暗电流可 以降低将近 1000 倍 ,同时保持高的响应率和增益.

Jiang 等人还研究了使用 InGaP 作为电流阻塞 层的结构 ,也得到了非常好的结果^[14]. 他们设计的 量子点结构在 77K 温度下达到了非常低的暗电流 密度(-0.5V 偏压下 10^{-10} A/cm²;+0.5V 偏压下 10^{-11} A/cm²).

3.2 有源区不掺杂的量子点结构

大多数 QDIP 都是在两个接触层之间对量子点 进行 n 型掺杂. 一个研究小组设计了一种有源区使 用不掺杂多层量子点结构的 QDIP^[15]. 根据他们的 实验结果,有源区不掺杂的 InAs/GaAs QDIP 比起那 些直接掺杂的样品具有更低的暗电流.

在该项研究中,他们期望光响应显示出与偏压 强烈的响应关系,以及与 n 型掺杂结构相比更低的 暗电流. 结合 AlGaAs 阻塞层,样品峰值波长 (6.2μ m)在 -0.7V 偏压、77K 温度下达到了~10¹⁰ cm · Hz^{1/2}/W 的探测率.特别值得关注的是,其暗电 流密度比直接掺杂量子点结构显著降低了(77K 下 从 1 A/cm²降至 10⁻⁶A/cm²).

3.3 DWELL(阱中量子点)结构

Hirakawa 等人设计了一种在量子阱中生长量子 点的结构^[16],图 4 是其示意图. 量子点的中的载流 子 被光激发至调制掺杂的势垒层与阱层之间的 AlGaAs/GaAs 二维通道中,在外加电场的作用下进 行横向输运.这种结构的特点是能够获得具有较高 面密度的量子点材料,因而提高探测器的光子采集 效率.

图 4 阱中量子点结构载流子激发和输运示意图

在该篇报道中,他们还研究了光激发载流子的 寿命,发现这一寿命与异质界面通道和量子点层之 间的距离成指数变化关系.77K 温度下当载流子寿 命在0.1—1ms量级时,观察到非常大的光增益 (~10⁵—10⁶).

3.4 QDIP 新材料系统

目前研究最多的 QDIP 是使用生长于 GaAs 衬底上的自组织 In(Ga)As 量子点材料. 最近有几个小组研究了用其他材料系统制作的 QDIP,例如 Ge/Si 量子点^[17]. 在红外响应谱测量中,他们设计的 QDIP 具有非常宽且偏压可调的谱线范围(1.6—20 μ m).这一谱线特征对于某些应用如热成像探测,是非常有用的. 另外,该器件的最大单波长探测率是大约 2.1 × 10¹⁰ cm · Hz^{1/2}/W (30K 温度、0.2 V 偏压、6 μ m 峰值波长). 他们还研究了材料的 *I – V* 特性,显示出由于 Si 阻塞层的存在而使暗电流得到有效抑制.

除了 Ge/Si 材料外,生长于 InP 衬底上的 InAs/ InAlAs 多层量子点也被用作红外探测器的有源 区^[18],并且达到了较好的器件指标.

3.5 工作于较高温度下的探测器

由于 HgCdTe 探测器和量子阱探测器都需要工 作在极低温度下,而较高温度甚至是常温探测又具 有非常重要的意义,因此量子点红外探测器被人们 寄予厚望. Chakrabarti 等人报道了工作于 150— 175K 的探测器结构,并且达到了 0.34A/W 的较高 峰值响应率^[19]. Jiang 等人设计了探测范围在 6.7— 11.5μm 的多层量子点结构,该器件可以工作于 260K温度^[20]. Kim等人报道了工作于室温下的 InAs/GaAs 量子点探测器^[21],显示出了令人振奋的 应用前景. 图 5 是该结构在 300K 下的吸收谱.

图 5 300K 下 InAs/GaAs 量子点材料的红外吸收谱

目前报道的最高响应率是利用横向输运结构量 子点红外探测器达到的,载流子输运转移到具有高 电子迁移率的邻近通道中^[22,23]. Lee 等人最先报道 了 10K 温度 9V 偏压下 4.7A/W 的高响应率. 最近, Chu 等人使用 InGaAs 通道层达到了 11A/W 的共振 光响应. Le等人设计的LWIR 阱中量子点结构在 -2.4V 偏压下响应率达到了 12.4A/W. 从上述数 据可见 横向输运量子点探测器显示出极高的响应 率值. 这种结构的缺点在于它与焦平面阵列体系的 低兼容性.

4 现存问题和提高办法

尽管 QDIP 具有很多潜在的优点并已得到了广 泛研究 但目前现有的器件水平还未完全显示出理 论预言的优势. 至少还有以下方面需要得到重视并 进一步提高.

4.1 对掺杂控制的研究

为了在量子点中分配电子,掺杂是量子点红外 探测器设计中非常关键的一步.但是问题也随之出 现,如果直接在量子点层进行掺杂,电子的随机分布 可能导致显著的波动;而如果在势垒中掺杂(调制 掺杂),电离的掺杂电子的随机分布会泄漏到电流 路径中,造成暗电流增加.目前已有对不同层掺杂效 果进行比较的报道,但不可否认,关于掺杂的位置选 择有必要得到更深入的研究.

此外,掺杂浓度对量子点的形成也十分重要.当 掺杂浓度比较低时,掺杂的 Si 或 Be 原子可以释放 相邻原子内的应力,从而起到量子点形成过程中成 核中心的作用,这有利于形成形状密度均匀的量子 点^[24 25]. 反之,当掺杂浓度较高时,会降低量子点的 均匀性. 此外,高的掺杂浓度可能引起对器件性能不 利的高暗电流.

4.2 控制量子点的尺寸和密度

几乎所有以量子点材料作为有源区的光电器件 都希望获得高密度、均匀性好的量子点,而点的尺 寸、密度、均匀性对量子点红外探测器又具有特别重 要的意义.

首先,大多数自组织生长的量子点都有较大的 横向尺寸(约几十纳米),但在生长方向上通常比较 小(约几纳米).这种接近"量子盘"的形状使点在生 长方向的限制作用非常强,而水平方向的限制作用 就相对弱的多,这也直接导致了量子点中多个能级 的存在.如果跃迁是基于束缚态之间的,载流子必须 穿过势垒才能形成光电流.也就是说,只有部分光生 载流子对光电流有贡献,这通常被认为是量子点阵 列正入射响应通常比较弱的最主要原因.

图 6 量子点红外三色探测器的正入射响应谱

所以如果期望有强的垂直入射吸收,我们应控 制量子点的尺寸足够小,以使点内只存在一个束缚 态,或者第一激发态非常接近势垒边缘.这是因为如 果激发态离势垒导带太远,光电流很难被激发,器件 可能需要工作于相当高的偏压下.反之,如果想要得 到更宽的响应谱,应当使点内有两个或两个以上的 束缚态.一个典型的例子就是图6中Wang等人的 报道,他们通过改变量子点的生长温度设计了一种 三色探测器^[26].

要得到好的探测器特性,也要争取达到高的点 密度和均匀性以提高吸收量子效率.因为每一个量 子点都可能对光产生有效吸收,而吸收量子效应的 提高对于器件获得高响应率和探测率非常关键.另 一个需要克服的障碍是量子点尺寸的不均匀性.量 子点能级的不均匀展宽非常明显地使探测器性能降 低一个甚至几个数量级.实验测得的 QDIP 的量子 效率~1%,不仅远远小于理论计算值,甚至比量子 阱探测器的量子效率(~20%)还要低很多.这些都 充分说明进一步提高量子点密度和均匀性的重要.

4.3 对浸润层和隔离层的研究

在 S - K 生长模式中 需要生长多层量子点以获 得更高的点密度 达到足够大的光电流. 但超晶格多 层堆垛产生的应变积累是一个大的问题 因为它导致 失配位错的出现 ,从而降低器件性能. 对于量子点红 外探测器而言 ,直接的后果就是易产生热辅助隧道暗 电流^[27]. 因此,控制各层量子点间隔离层的厚度非常 重要. 目前器件结构中通常使用较厚的 GaAs 隔离层 , 一方面是防止失配位错的产生 ,同时也为了避免热发 射和隧穿效应的产生. 为了得到多层无位错的高质量 量子点,进一步实验摸索最佳的隔离层材料组分和厚 度是研究人员的重要任务之一.

此外我们知道,在三维岛状结构产生之前,衬底 上首先生成的是浸润层.在一定程度上,二维浸润层 结构类似于量子阱,它会使自组织量子点的理论能 级位置降低,并且还可能成为激发载流子的一条理 想输运通道.因此,浸润层对量子点吸收的影响是显 而易见的.但在多数研究中,浸润层的作用却被忽略 了,这也是今后需要扩展的一个研究点.

5 结束语

本文讨论了量子点红外探测器几个重要的优 点,包括垂直入射响应、更低的暗电流、更高的响应 率和探测率,等等.我们还分析了这方面研究最新的 实验结果.在这些内容的基础上,提出了进一步提高 器件性能的几种可能途径.

参考文献

- [1] Sakoglu U, Tyo J S, Hayat M M et al. Opt. Soc. Am. B, 2004, 21 7
- [2] Zhuang Q D , Li J M et al. Appl. Phys. Lett. , 1998 , 73 3706
- [3] Boucaud P , Sauvage S. C. R. Physique , 2003 , 4 :1133
- [4] Liu H C , Duboz J Y , Dudek R et al. Physica E. , 2003 , 17 : 631
- [5] Chakrabarti S , Stiff-Roberts A D , Bhattacharya P et al. Elect. Lett. , 2004 , 40 3

- [6] Liu H C , Gao M et al. Appl. Phys. Lett. , 2001 , 78 79
- [7] Liu H C, Aslan B, Korkusinski M et al. Infrared Phys. Tech. ,2003 ,44 503
- [8] Phillips J. J. Appl. Phys. , 2002 , 91 4590
- [9] Xu S J , Chua S J , Mei T et al. Appl. Phys. Lett. ,1998 ,73 : 3153
- [10] Kochman B , Stiff Roberts A D et al. IEEE J. Quant. Elect. , 2003 , 39 459
- [11] Towe E , Pan D. IEEE J. Selected Topics Quant. Elect. , 2000 , 6 408
- [12] Wang S Y , Lin S D , Wu H W et al. Infrared Phys. Tech. , 2001 , 42 473
- [13] Lee S W , Hirakawa K. Physica E , 2002 , 13 305
- [14] Jiang L , Li S S , Yeh N-T et al. Elect. Lett. , 2002 , 38 :1374
- [15] Chen Z H, Baklenov O, Kim E T et al. J. Appl. Phys., 2001 89 4558
- [16] Hirakawa K , Lee S W , Lelong P et al. Microelect. Engin. , 2002 , 63 185
- [17] Rappaport N , Finkman E et al. Infrared Phys. Tech. , 2003 , 44 513
- [18] Finkman E , Maimon S , Immer V et al. Physica E , 2000 , 7 : 139
- · 书评和书讯 ·

- [19] Chakrabarti S, Stiff-Roberts A D, Bhattacharya P et al. IEEE Phot. Tech. Lett. ,2004 ,16 :1361
- [20] Jiang L , Li S S , Yeh N-T et al. Appl. Phys. Lett. , 2003 , 82 1986
- [21] Kim M D , Noh S K , Hong S C et al. Appl. Phys. Lett. , 2003 ,82 553
- [22] Moldavskaya L D , Shashkin V I , Drozdov M N et al. Physica E , 2003 , 17 634
- [23] Le D T, Morath C P et al. Infrared Phys. Tech. , 2003, 44: 517
- [24] 王海龙,朱海军,李晴等. 红外与毫米波学报,1999,18 423 [Wang H L, Zhu H J, Li Q *et al.* J. Infrared Millim. Waves, 1999,18 #23(in Chinese)]
- [25] 王海龙,朱海军,封松林等.发光学报 2000 21 20[Wang H L, Zhu H J, Feng S L *et al.* J. Infrared Millim. Waves, 2000,21 20(in Chinese)]
- [26] Wang S Y , Chen S C , Lin S D et al. Infrared Phys. Tech. , 2003 ,44 527
- [27] Stewart K , Buda M , Wong Leung J et al. J. Appl. Phys. , 2003 , 94 5283

科学出版社物理类新书推荐

书名	作(译)者	定价	出版日期	发行号
相互作用的规范理论	戴元本	估计¥65.00	2005年6月	0 - 2148
计算物理学	马文淦	¥ 37.00	2005 年 5 月	O – 2147
计算电磁学要论	盛新庆	¥32.00	2005 年 3 月	O – 1900
窄禁带半导体物理学	褚君浩	¥120.00	2005 年 5 月	O – 2093
计算声学——声场的方程和波	李太宝	¥38.00	2005 年1月	O – 2016
半导体量子器件物理	傅英 陆卫	¥ 50.00	2005 年1月	O – 2004
磁层粒子动力学	徐荣兰	¥35.00	2005 年1月	O – 1961
现代声学理论基础	马大猷	¥48.00	2005 年1月	O – 1830
物理学家用微分几何(第二版)	候伯元 候伯宇	¥98.00	2005 年 3 月	0 – 1976
数学物理方程及其近似方法	程建春	¥ 58.00	2005 年 2 月	0 – 1952
随机振动的虚拟激励法	林家浩 张亚辉	¥45.00	2004 年 9 月	O – 1889
准晶物理学	王仁卉	¥45.00	2004 年 8 月	O – 1802
非平衡凝固新型金属材料	陈光 ,傅恒志	¥42.00	2004 年 8 月	O – 2027
金属陶瓷薄膜及其在光电子技术中的应用	孙大明 孙兆奇	¥ 56.00	2004 年 7 月	0 – 1942
岩石力学	谢和平 陈忠辉	¥ 54.00	2004 年 5 月	0 – 1944

欢迎各界人士邮购科学出版社各类图书. 如果您有出版意向,请和我们联系. 凡购书者均免邮费,请按以下方式和我们联系: 电 话:010-64017957 64033515 电子邮件:mlhukai@yahoo.com.cn 或 dpyan@cspg.net 通讯地址:北京东黄城根北街16 号 科学出版社 邮政编码:100717 联系人:胡凯 鄢德平 欢迎访问科学出版社网址 http://www.sciencep.com