太赫茲半导体探测器研究进展*

曹俊诚[†]

(中国科学院上海微系统与信息技术研究所 信息功能材料国家重点实验室 上海 200050)

摘 要 太赫茲(THz)探测器是 THz 技术应用的关键器件之一. 基于半导体的全固态 THz 量子阱探测器 (THzQWIP)具有探测响应速度快、制作工艺成熟、体积小和易集成等优点. 文章简要介绍了 THz 探测器的分类和特 点 重点介绍了 THzQWIP 的工作原理和研究进展.

关键词 太赫兹 ,量子阱探测器 ,探测响应率

Terahertz semiconductor detectors

CAO Jun-Cheng[†]

(State-Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

Abstract Terahertz (THz) detectors are essential for the application of THz technology. Solid – state THz quantum – well infrared photodetectors have many advantages such as fast responsivity, small size, ease of integration and mature fabrication technology. We give a brief overview of the various types of THz detectors and their characteristics, with emphasis on their basic principle and recent research progress.

Keywords terahertz , quantum – well infrared photodetector , responsivity

1 引言

太赫茲(THz)探测器与THz 辐射源一样,是 THz 技术^[1-7]应用的关键器件.受限于THz 辐射源 的低输出功率和THz 频率范围内较高的热辐射背 景噪声等因素,对THz 探测器的探测灵敏度和频率 分辨率等性能提出了很高的要求.目前THz 辐射的 探测方法主要包括热辐射探测法、Fourier(傅里叶) 变换光谱法、时域光谱法、外差式探测法以及半导体 量子阱探测(quantum-well infrared photo-detector, QWIP)方法^[8-12]等.其中全固态的THz 半导体量子 阱探测器(THzQWIP)^{11,12]}因其响应速度快、工艺成 熟、体积小和易集成等优点,成为本领域的研究热点 之一.

半导体探测器能对某一个特定频率的辐射进行 响应,因此具有很好的探测灵敏度和频率分辨率.目前,红外波段的 QWIP 结构已经实现了 1024 × 1024 像素的红外焦平面阵列,并得到了实际的应用^[10]. 2004 年, Graf 等^[11], H. C. Liu 等^[12]分别研制了 THzQWIP,从而把QWIP的探测波长延伸到了THz 波段.随着时间的推移, THzQWIP的工作温度和探 测率等性能逐步得到提高,并被尝试应用于THz通 信等研究领域.本文重点介绍了THzQWIP的工作原 理和研究进展.

2 THz 辐射的探测方法

2.1 Fourier 变换光谱法

Fourier 变换光谱方法是常用的中远红外频谱 测量方法. 目前 Fourier 变换光谱仪覆盖了从红外到 THz 波段很宽的频率范围. Fourier 变换光谱仪是基

 ^{*} 国家杰出青年基金(批准号 60425415)、国家自然科学基金重 大项目(批准号:10390162)和上海市优秀学科带头人计划(A 类,批准号 05XD14020)资助项目
2006-08-15收到初稿2006-09-01修回

[†] Email jccao@ mail. sim. ac. cn

于 Michelson 干涉仪研制而成的. 通过连续改变干涉 仪内一个镜面的位移,测量得到的干涉图样包含了 光源的频谱特性. 对于红外及 THz 波段的光谱测 量,光源常常采用能辐射很宽带宽电磁波的高温黑 体(如高压汞灯),探测器则采用各种热辐射计. 为 了降低热噪声的影响,热辐射计需要在低温下工作. Fourier 变换光谱仪使用的热辐射探测计是热效应 探测器,是非相干的,不能记录 THz 辐射的位相信 息. 因此 Fourier 变换光谱法的灵敏度极大地受限于 热背景. 另外, Fourier 变换光谱法很难用来测量脉 冲 THz 信号,并且难以完成需要很高频率分辨率的 测试.

2.2 时域光谱法

对脉冲 THz 信号,THz 时域谱方法^[1]是一种非 常有效的测试手段.THz 时域谱实验系统主要由超 快脉冲激光器、THz 发射元件、THz 探测和时间延迟 控制系统组成.其中 THz 探测有两种采样方式:光 电导采样方式和电光采样方式.光电导采样方式使 用具有较短载流子寿命的材料.当超快的探测激光 波束照射在材料上时,在很短的时间内材料变为导 体,所产生的电流正比于 THz 脉冲电场的瞬时值. 通过改变探测器波束和 THz 脉冲的时间延迟,可以 得到整个 THz 电场随时间的变化情况.电光采样方 式使用电光晶体作为 THz 脉冲的时间延迟,可以 得到整个 THz 电场随时间的变化情况.电光采样方 式使用电光晶体作为 THz 脉冲的时间延迟,可以 得到整个 THz 电场随时间的变化情况.电光采样方 式使用电光晶体作为 THz 脉冲的时间延迟,可以 得到整个 THz 电场随时间的变化情况.电光采样方

与 Fourier 变换光谱法相比,THz 时域光谱法具 有更好的信噪比和频率分辨率,而且还能对 THz 电 场的位相随时间变化等信息进行相干测量,因此 THz 时域光谱法在 THz 光谱和成像等方面具有广阔 的应用前景^[1-3].

2.3 外差式探测法

以上 THz 探测方法都是宽带光谱方法. 当需要 更高的频率分辨率时,需要采用其他的窄带探测方 法,如外差式探测法. 外差式探测系统中需要一个本 征 THz 振荡源. 首先,待测信号与该本征 THz 信号 混合,对信号频率进行下转化(down conversion),然 后再对转化后的低频信号进行放大和测量. 目前已 成功利用 2.5 THz 的平面肖特基器件完成太空观测 实验^[13]. 基于超导 – 绝缘体 – 超导(SIS)结的 THz 探测也属于这种探测方式^[14].该方法在天文、遥感 等方面已有较多的成功应用.

前面讨论的 Fourier 变换光谱法和时域光谱法 属于宽带探测方法,外差法探测器属于窄带探测器. THzQWIP 是另外一种重要的窄带探测器.下面重点 讨论 THzQWIP.

3 THzQWIP 的基本原理

THzQWIP 与红外波段的 QWIP 的工作原理是 一样的. 图 1 为 n 型 GaAs/AlGaAs 的 QWIP 器件结 构和能带示意图^[15]. 当该器件处于外加光辐射作用 下,量子阱中的束缚电子吸收光子后,跃迁到连续 态,在外电场作用下形成光电流. 通过测量光电流的 变化可以实现对光辐射的探测. 器件的核心是 n 型 掺杂的多量子阱. 为保证充分的光吸收,量子阱的个 数通常为 10—100 个. 量子阱中束缚态到连续态的 能量间隔可以通过调节量子阱宽度和势垒高度等参 数进行改变.

在n型GaAs/AlGaAs QWIP中,正入射光不能

图 1 GaAs/AlGaAs QWIP 器件结构和能带示意图((a)无偏压 情形(b)有偏压情形).量子阱中的束缚电子吸收光子(hv)后, 跃迁到连续态,在外电场作用下形成光电流^[15]

激发子带跃迁. 对于单元 QWIP 器件来说,通常采用 45°角背入射方式. 量子阱中束缚电子不能吸收正入 射光的物理机制如下 :n 型量子阱仅在生长方向上 对电子有束缚作用,在垂直于生长方向上电子的色 散关系在有效质量近似下为抛物线型,在此方向上 电子的性质与自由电子相似,不能吸收光子. 由于垂 直入射的光仅有横向分量,导致其不能被束缚电子 吸收. 基于此,考虑到 p 型量子阱中,被束缚的空穴 在横向的色散关系有很大的非抛物性,可以吸收正入射光,从而可以制备出不需光栅耦合的 p型 QWIP.但由于其他因素的限制,目前 p型 QWIP的 性能还远不如 n型 QWIP.

相对于其他的光子型红外探测器(如 HgCdTe 探测器等),QWIP的主要优点是成熟的材料生长技 术和器件工艺.目前可以得到高质量、高稳定性和大 面积均匀的 GaAs/AlGaAs 异质材料,这为制备复杂 的器件结构和大面积阵列奠定了坚实的基础.由于 QWIP 的以上特点,其未来的主要发展方向为(1) 长波长探测,包括 THz 辐射的探测(2)高精度和大 面积红外焦平面阵列应用.目前已经实现了1024 × 1024 像素的 QWIP 红外焦平面阵列,并应用于红外 成像等领域(如图 2)(3)双色和多色红外焦平面 阵列应用,等等.

图 2 1024 × 1024 像素的 QWIP 红外焦平面阵列对直升飞机的 成像. 成像距离为 7km,可以清楚地看到直升飞机轮廓和云 彩^[10]

4 THzQWIP 的研究进展

4.1 THzQWIP 的理论设计

THzQWIP 理论设计可沿用 QWIP 的设计方法. QWIP 是一种子带间的单极器件,它只利用了电子 (空穴)在不同电子(空穴)子带间的跃迁,不涉及带 间跃迁.QWIP 器件设计的核心问题是求解电子(空 穴)在生长方向上的输运问题.目前常用的方法有 三种(1)基于量子输运理论的非平衡格林函数方 法^[16].(2)基于玻尔兹曼方程的蒙特卡罗模拟方法. Ryzhii等^[17]采用该方法研究了 QWIP 的暗电流、I-V 特性和载流子非线性动力学输运过程等;Cellek 等^[18]在蒙特卡罗模拟中采用了微观散射模型来处 理局域态 – 扩展态间的跃迁问题.(3)基于准微观 散射模型的率方程方法. Jovanovic 和 Harrison 等^[19] 采用该方法研究了 QWIP 的增益、光响应谱和 *I – V* 特性等.

非平衡格林函数方法可以方便地包括各种微观 散射机制和物理效应,如量子关联、去极化效应和记 忆效应等.但非平衡格林函数方法计算量非常大,很 难将其应用于具有复杂结构的器件设计中.而率方 程方法虽然部分采用了微观散射模型,但存在唯象 自由参数,难以给出定量的结果.蒙特卡罗方法可以 在微观上方便地考虑不同散射过程对器件性能的影 响.综合考虑,蒙特卡罗方法比较适合用于 QWIP 的 设计.

4.2 THzQWIP 的研制

THzQWIP 是红外波段 QWIP 的自然推广. 对于 一个优化的 QWIP 结构,需要使第一激发子带与垒 顶的能级共振,即在阱内只有一个束缚能级. 这种结 构可以同时具有较大的子带间吸收和较快的激发电 子弛豫. 因此,设计时需要优化 QWIP 的结构参数 (如组分、掺杂浓度和阱、垒的宽度等)来满足这一 要求. 红外波段的 QWIP 已成功应用于 3—12μm 范 围的成像和探测等领域^[10,15].对于更长波长的 THzQWIP,需要更小的垒高度和较低的掺杂浓度 (以降低自由载流子吸收).

2004 年 Liu 等^[12]采用优化的量子阱结构设计, 通过选择低 Al 组分的垒结构,研制了基于 GaAs/ Al_{0.05}Ga_{0.95}As 材料体系的 THzQWIP. 其峰值响应波长 为 42μm(对应频率为 7.1 THz). 图 3 为该探测器在 温度为 5 10 15 和 20K 时的峰值响应率与外加偏压 的关系.本文作者等^[20]改进了光响应谱理论模型,计 算了该 THzQWIP 的光响应谱与光子能量的关系(如 图 4)理论计算与实验基本吻合.由于电声子相互作 用(GaAs 声子能量处于 34—36 meV),GaAs/AlGaAs THzQWIP 无法探测到这一波段的辐射.

由于 THzQWIP 束缚态到连续态的能量间距非 常小,为了抑制暗电流,THzQWIP 需要在非常低的 温度下工作.另外,由于 THzQWIP 工作于偏压状态 下,因此,暗电流对器件性能的影响较大,如何抑制 暗电流是提高 THzQWIP 性能的关键.

另外,Graf等^[11]于2004年报道了一种具有量 子级联结构的THzQWIP,其探测波长为84μm(对应 3.57THz),工作温度为10—50K,10K时探测响应率 为8.6mA/W.

图 3 基于 GaAs/Al_{0.05} Ga_{0.95} As 材料体系的 THzQWIP 在温度为5,10,15 和 20K 时的峰值响应率.该 THzQWIP 由 50 个量子阱组成,GaAs 阱宽为 12nm,Al_{0.05} Ga_{0.95} As 垒宽为 40nm 峰值探测波长为 42µm(对应频率为 7.1 THz)¹²

图 4 计算的^[20]和实验的^[12](插图)THzQWIP 光响应 谱与光子能量的关系.器件结构同图 3.由于电声子相 互作用(GaAs 声子能量处于 34—36 meV),GaAs/Al_{0.05} Ga_{0.95}As THzQWIP 无法探测到这一波段内的辐射

4.3 THzQWIP 的应用

THzQWIP 可以应用于有毒有害物质的鉴别和 THz 无线通信等领域的研究.由于大部分分子体系 在 THz 波段具有丰富的特征吸收峰,而 THzQWIP 具有很好的光谱分辨能力和很快的响应速度,利用 普通的连续波光源(如高压汞灯),就可以实现有毒 有害物质的实时检测.制备双色和多色的 THzQWIP 器件,还可以提高物质鉴别的准确性,实现多种物质 的同时鉴别功能等.另外,高质量的 THzQWIP 单元 器件可以应用于 THz 无线通信,THzQWIP 焦平面阵 列可以应用于 THz 实时成像和太空观测等等.

5 展望

本文简要介绍了 THz 探测器的分类和特点,重 点介绍了 THzQWIP 的工作原理和研究进展.目前, 各种非相干探测方法(如热辐射计)以及一些相干 的测量方法(如 THz 时域光谱法)已经较为成熟,并 被成功地应用于光谱和成像等领域.由于可以方便 地制备高质量和大面积均匀的 THzQWIP 异质结构 材料,THzQWIP 在高灵敏度和高分辨率探测尤其是 在焦平面阵列制备方面具有独特的优势.可以预见, 高性能的 THzQWIP 单元器件及其焦平面阵列的研 制将对 THz 通信和 THz 阵列探测应用产生十分重 要的影响.

致 谢 作者感谢与 H. C. Liu 博士、郭旭光博 士、伍滨和博士以及王长的十分有益的讨论.

参考文献

- [1] 王少宏,许景周,汪力等. 物理,2001,30:612 [Wang S H,Xu J Z,Wang L *et al.* Wuli (Physics),2001,30:612 (in Chinese)]
- [2] Siegel P H. IEEE Trans. Microwave Theory Tech. , 2002 , 50 (3) :910
- [3] Ferguson B, 张希成. 物理, 2003, 32:286 [Ferguson B, Zhang X C. Wuli (Physics), 2003, 32:286 (in Chinese)]
- [4] Köhler R , Tredicucci A , Beltram F et al. Nature , 2002 , 417 : 156
- [5] 曹俊诚. 物理, 2006, 35:632 [Cao J C. Wuli (Physics), 2006, 35:632 (in Chinese)]
- [6] Cao J C. Phys. Rev. Lett. , 2003 , 91 : 237401
- [7] Lü J T , Cao J C. Appl. Phys. Lett. , 2006 , 88 :061119
- [8] Liu H C. Appl. Phys. Lett. , 1992 , 60 :1507
- [9] Levine B F. J. Appl. Phys. , 1993 , 74 : R1
- [10] Goldberg A , Choi K K , Cho E et al. , Infrared Phys. & Tech. , 2005 , 47 :91
- [11] Graf M , Scalari G , Hofstetter D et al. Appl. Phys. Lett. , 2004 , 84 :475
- [12] Liu H C , Song C Y , SpringThorpe A J et al. Appl. Phys. Lett. , 2004 , 84 : 4068
- [13] Gaidis M C et al. IEEE Trans. Microwave Theory Technol. , 2000, 48:733
- [14] Dolan G J, Phillips T G, Woody D P. Appl. Phys. Lett., 1979, 34:347
- [15] Schneider H , Liu H C. Quantum Well Infrared Photodetectors , Berlin Heidelberg NewYork Springer , 2006 , 45
- [16] Lake R, Klimeck G, Bowen R C et al., J. Appl. Phys., 1997, 81:7845
- [17] Ryzhii M , Ryzhii V , Willander M. J. Appl. Phys. , 1998 , 84 3403
- [18] Cellek O O , Memis S , Bostanc U et al. Physica E ,2004 ,24 : 318
- [19] Jovanovic V D , Harrison P , Ikonic Z et al. J. Appl. Phys. , 2004 , 96 :269
- $[\ 20\]$ Cao J C , Chen Y L , Liu H C. Superlattices and Microstructures , 2006 , 40 :119