用(e,2e)电子碰撞电离测量乙烯分 子中的扭曲波效应*

任雪光 宁传刚 邓景康[†] 张书锋 苏国林

(清华大学物理系 原子分子纳米科学教育部重点实验室 北京 100084)

摘 要 利用新一代高性能 e 2e)电子动量谱仪 ,在 400—2400 eV 的大范围入射电子能量条件下 ,测量了乙烯分 子电子密度的动量分布. 实验测量的乙烯 1b_{3g}轨道电子动量分布与平面波冲量近似的理论计算结果相比 ,在低动量区 和高动量区出现明显的上翘(turn up)效应 ,并且此上翘效应随着入射电子能量的增加而逐渐减小. 进一步的分析证 实由于分子的扭曲波效应引起 1b_{3g}轨道动量分布在低动量区和高动量区的上翘. 实验测量结果将对分子扭曲波理论 计算的建立提供实验依据.

关键词 电子动量谱学 扭曲波效应 (e 2e)电子碰撞电离 乙烯分子

Direct observation of distorted wave effects in ethylene by a new type of (e , 2e) electron momentum spectrometer

REN Xue-Guang NING Chuan-Gang DENG Jing-Kang[†] ZHANG Shu-Feng SU Guo-Lin (Department of Physics and Key Laboratory of Atomic and Molecular NanoSciences of MOE, Tsinghua University, Beijing 100084, China)

Abstract We report here the direct measurement of electron momentum distributions for ethylene using a newly developed high performance electron momentum spectrometer at different impact energies from 400 to 2400 eV. The " turn up " effects in the (e , 2e) cross sections of the $1b_{3g}$ orbital compared with the plane wave impulse approximation calculations are observed in both low and high momentum (*p*) regions , but such discrepancies become smaller with increase of the impact electron energies. It is suggested that the observed discrepancies are due to the distorted wave effects in molecules , which will provide experimental corroboration for theoretical calculations based on distorted waves in molecules.

Keywords Electron momentum spectroscopy , Distorted wave effects , (e , 2e) electron impact ionization , Ethylene

电子动量谱学(electron momentum spectroscopy, EMS)以电子碰撞电离的(e,2e)反应为基础,作为 直接测量物质中电子能量 – 动量二维分布的方法, 现已发展成为研究物质的电子结构、电子关联和电 离机制的强有力手段^[1-3].在 EMS 的(e,2e)反应 中,入射电子与靶物质(泛指原子、分子、固体或表 面)碰撞,使其发生电离,产生两个出射电子,其中 一个是被散射的入射电子,另外一个是从靶物质中 碰撞出来的电子.我们已知入射电子的能量和动量, 通过测量两个出射电子的能量和动量,根据能量和 动量守恒,我们就可以得到靶物质中被碰撞出电子 的能量和动量.而在对大量(e 2e)反应事件统计的

† 通讯联系人. Email :djk – dmp@ tsinghua. edu. cn

 ^{*} 国家自然科学基金(批准号:10575062)和高等学校博士学科点 专项科研基金(批准号:20050003084)资助项目
 2005-09-22收到初稿:2005-11-25修回

基础上,可以得到不同能级(即不同轨道或电子态) 的电子动量分布,即电子动量谱.因此,通过 EMS 的 (e 2e)方法,人们可以清晰而灵敏地获得轨道电子 的动量分布信息.

电子动量谱学研究中的关键设备是电子动量谱 仪,它的发展经历了三个阶段.20世纪70年代出现 的第一代谱仪在电子能量 - 动量二维分布的测量 中,既不对能量扫描,也不对角度(动量)扫描,实验 对单能量和单角度逐点进行测量,因而探测效率很 低,只能对简单的原子和分子样品进行测量.但是此 时的研究验证了电子动量谱学实验方案的可行性, 并显示了电子动量谱学潜在的研究价值.80年代出 现的第二代谱仪利用不同的分析器产生能量色散或 角度色散,并采用一维位置灵敏探测器实现了多能 量或多角度的同时测量 因而在性能上有了较大提 高. 人们利用第二代谱仪已经得到了一系列具有特 色的研究成果,并看到了电子动量谱学将会出现的 巨大研究价值. 但第二代谱仪的探测效率还较低 很 难对一些(e 2e)反应截面较小的过程进行研究.近 年研制成功的第三代电子动量谱仪采用新型的能量 分析系统和二维位置灵敏探测器,谱仪性能特别是 谱仪的探测效率有了很大提高,可以对许多小截面 的反应过程进行测量,使电子动量谱学能够精确测 量原子分子的电子轨道能量和轨道形状的特点 不 仅在物理、化学等基础领域中具有巨大的研究价值, 也将会在生物、材料、药物等应用领域中具有巨大的 研究价值.

在 EMS 的理论描述或理论研究中,目前常用的 方法是在平面波冲量近似(plane wave impulse approximation ,PWIA) 或扭曲波冲量近似(distorted wave impulse approximation ,DWIA)下 (e,2e)反应 的微分散射截面可以写成 Mott 散射截面和能量 -动量谱函数两项因子的乘积^[1,3]. 其中 PWIA 将粒 子的运动用平面波方程来代替,而在 DWIA 方法下 粒子的运动采用扭曲波势下的弹性散射方程进行描 述.利用平面波冲量近似来计算 EMS 中(e 2e)反应 的微分散射截面虽然简单,但对于大部分轨道的高 动量区和一些特殊的原子分子轨道(如 d-like 和 π*-like 轨道)的低动量区,计算得到的散射截面偏 低. 显然 将入射和出射电子看成简单的平面波略显 粗糙. 而扭曲波冲量近似则考虑了靶对入射电子以 及靶离子对出射电子的扭曲效应. 扭曲波冲量近似 能够更准确地描述 EMS 的实验结果^[1,3].

实验证实 PWIA 的理论计算方法能够比较好地

描述原子分子中低动量区 EMS 的实验结果^[1,2],而 在高动量区由于扭曲波效应比较明显,实验结果存 在明显的上翘(turn up)现象.高动量区的上翘我们 比较容易理解,由于动量空间高动量区(high p)常 常对应物质坐标空间的小 r 区域 ,即通常离原子实 比较近的区域.对于(e 2e)反应的入射电子和出射 电子来说 这个区域往往会受到比较明显的原子实 的扭曲作用 反映在电子动量谱中就会出现其强度 或实验的(e 2e)散射截面在高动量区的上翘现象. 这样的解释比较合理,而且得到了电子动量谱学实 验与理论的进一步证实^[1,4,5]. 然而,在最近的 EMS 研究中,在原子的 nd 轨道^[6,7]和分子的 d – like 或 π^* – like 轨道^[8–10]中电子动量分布的低动量区 ,实 验测量的(e 2e)反应的散射截面与 PWIA 的理论计 算结果相比出现了明显的上翘现象. 对于原子 nd 轨 道的结果,DWIA的进一步计算表明,原子 nd 轨道 低动量区电子动量分布的上翘现象源于其扭曲波效 应的作用. 然而对于分子体系来说, 由于分子存在多 中心问题(multi - center),考虑扭曲波势相当困难. 因此 从理论的角度研究分子体系中低动量区动量 谱的上翘效应具有相当的难度.在这种情况下.我们 需要开辟从实验的角度对此上翘效应进行深入分析 的途径. 从扭曲波效应的本质来看, 它与电子的能量 存在一定的依赖效应,电子能量越低扭曲波效应越 明显,电子能量越高扭曲波效应越弱^[3-6].因此要对 实验中观测到的 π^* – like 轨道低动量区(e 2e)散 射截面的上翘现象与分子的扭曲波效应的相互关系 进行深入研究 需要在大范围改变入射电子能量并 具有足够好的能量分辨率的谱仪条件下进行 EMS 研究,才能得出具有足够说服力的结论^[9,10].然而 这样的谱仪实验条件要求,对于过去的电子动量谱 仪来说难度较大. 因为过去的电子动量谱仪通常只 能在单一入射电子能量条件下开展实验研究(如, 1200eV 或 1500eV)^{1,8,9}].

我们实验室最新研制成功的高性能第三代电子 动量谱仪,解决了 EMS 研究扭曲波效应中存在的这 些难题.新一代电子动量谱仪实现了高分辨率、高探 测效率的同时测量,探测效率较第二代谱仪提高了 两个量级,完成一个实验的周期从 2—3 个星期缩短 到数小时.更重要的优势是能够利用新的谱仪对 (e 2e)反应截面比较小的物理过程开展研究.谱仪 典型的能量和角度分辨率^[11,12]分别为 $\Delta E =$ 1.0—1.2eV $\Delta \theta = \pm 0.7^\circ$, $\Delta \phi = \pm 1.9^\circ$.新谱仪 另外一个重要的特点是能够在大范围改变入射电子 能量(400—2400 eV)的条件下开展 EMS 实验研究. 利用新谱仪所具有的这些优势,我们就能够对诸如 扭曲波效应等与电子能量存在一定依赖效应的物理 过程开展系统的实验研究^[9,11,12].

在本工作中,我们利用第三代电子动量谱仪多能 量、多角度同时测量的特点,直接得到了靶物质中轨道 电子的密度分布.并首次在400、600、800、1000、1200、 1600、2000和2400eV不同入射电子能量条件下,对乙 烯分子(C_2H_4) lb_{3g} 的 π^* -like轨道电子动量分布在低 动量区和高动量区的上翘效应进行了系统的研究,证 实了分子体系中 π^* -like轨道动量谱的上翘现象源于 分子扭曲波效应的作用.目前,在分子体系中由于存在 多中心问题,扭曲波效应的理论计算还无法开展,我们 的实验结果为促进分子体系扭曲波理论计算方法的建 立提供了实验依据.

实验中使用的第三代电子动量谱仪^[11,12]如图 1 所示. 谱仪中(e, 2e)反应的几何条件采用非共面 对称条件 电子枪产生一定能量的入射电子束 经过 准直模孔到达谱仪的(e,2e)反应室与靶物质发生 碰撞. 未发生碰撞的大部分电子将会被法拉第筒收 集. 在一定立体角范围内($\theta = 45^{\circ} \pm \Delta \theta$)出射的电 子 经过一定距离的自由飞行后到达圆锥形减速透 镜进行减速、聚焦,而后进入双环形能量分析系统 (DTA)进行能量分析,然后进入谱仪的二维位置灵 敏探测器 探测器输出的电子学信号经过放大、成形 等处理.在一次(e,2e)反应中,探测器输出的各个 时间信号和位置信号是同时性事件,可以形成符合. 经过快慢符合系统产生的符合控制信号控制多参数 数据获取系统 收集探测器输出的时间与位置的多 参数数据. 通过 EMS 的软件系统,对收集到的数据 进行进一步分析、处理,可以得到两个出射电子的能 量和方位角.在非共面对称几何条件下,角度 φ 与 动量 *p* 满足一一对应的关系^[1-3,11].

利用新的谱仪,我们在大范围改变入射电子能 量(400—2400 eV)的条件下,对乙烯分子进行了系 统的实验研究.在1000 eV入射电子能量同时能量 分析器的通过能为100 eV 条件下,实验测量得到的 乙烯分子的电离能谱如图2所示.其中(a)为 ϕ = -11° (b)为所有 ϕ 角加和的能谱结果.从实验测 量的电离能谱中,能够明显的分辨出乙烯分子各价 轨道1b_{3u},1b_{3g},3a_g,1b_{2u},2b_{1u}和2a_g以及2a_g轨道的 伴线结构.第三代电子动量谱仪的特点是多能量和 多角度的同时探测,能够直接测量得到轨道电子的 能量 – 动量(角度)的密度分布,如图3所示.其中

图 1 高性能第三代电子动量谱仪示意图

图 2 乙烯分子价轨道电离能谱

(a)为入射能 1000 eV 下实验测量的结果 (b)为 PWIA 下密度泛函理论(DFT – B3LYP)计算的结果, 并且考虑了谱仪的分辨率,采用高斯函数方法对理

图 3 乙烯分子中价轨道电子的能量 – 动量三维分布谱

论计算结果进行了卷积^[13]. 理论与实验的结果比较 可以看出, PWIA 理论能够比较好地描述乙烯分子 的价轨道电子密度的整体分布. 此外,在 1b_{3g}轨道的 电子密度分布中, PWIA 理论计算与实验结果相比, 在低动量区存在一定的差异,实验测量的 1b_{3g}轨道 电子动量分布在低动量区出现了明显的上翘效应, 如图 4.

为了对此上翘效应进行深入研究,需要在大范 围改变入射电子能量的条件下对乙烯分子进行实验 测量,才能对低动量区电子动量分布的上翘进行准 确的分析^[9,10],从而得到上翘效应的起因.为此,我 们在400—2400 eV 范围改变入射电子能量的条件 下,实验测量了乙烯分子1b_{3g}轨道电子动量分布,如 图4所示.图中理论描述采用 PWIA 近似下的 Hartree – Fock 和 DFT – B3LYP 方法进行计算,同时理 论计算还考虑了仪器的分辨率^[13],详细的计算过程 请参考文献[1—3,10—12].PWIA 理论计算与实 验测量结果的相比可以明显地看出,随着(e_2e)反 应入射电子能量的增加,实验测量的1b_{3g}轨道低动 量区动量谱的上翘效应逐渐减小.这是首次在大范 围改变入射电子能量的情况下,对低动量区电子密 度上翘效应进行的系统研究.

从低动量区实验的上翘效应与入射电子能量变 化的关系,我们可以清晰地看出乙烯分子1b_{3g}轨道 电子动量分布在低动量区的上翘效应随着入射能的 增加而逐渐减小的依赖关系.在原子体系对氙原子 4d 轨道的电子动量谱学研究中,低动量区实验测量 结果也同样存在上翘效应,通过原子的 DWIA 和 DWBA 计算,得到扭曲波计算的动量谱结果,并对 氙原子4d 轨道中的上翘效应进行了理论分析^[6,7]. 原子扭曲波效应理论计算结果给出了氙原子4d 轨 道在低动量区电子动量分布的上翘趋势,说明扭曲 波效应是引起氙原子4d 轨道在低动量区上翘效应 的原因.此外,原子体系扭曲波计算的理论预测表明,

图 4 400—2400eV 的入射能范围内乙烯分子 1b3g轨道的电子动量谱

当入射电子能量从低到高变化时,原子 nd 轨道低动 量区的上翘效应会逐渐变小,并从理论上给出了扭 曲波效应与入射电子能量的依赖关系^[6].在分子体 系中,从乙烯分子 $1b_{3g}$ 轨道坐标空间的电子密度分 布(如图 5 所示)来看,它与原子的 d 轨道或分子的 π^* 轨道的电子密度分布相似,通常称分子中具有类 似特征的轨道为 d – like 或 π^* – like 轨道.因此,对 分子体系中 d – like 轨道的分析与原子中 nd 轨道的 理论分析具有一定的相似性.

图 5 坐标空间中 1b3g轨道的电子密度分布

从实验测量的 1b_{3g}轨道的电子动量分布来看,它 在低动量区出现的上翘效应与电子的入射能量存在 依赖关系,上翘效应随入射电子能量的增加而逐渐变 小 符合扭曲波理论在原子 nd 轨道中对低动量区上 翘效应的预测结果.因此可以证实乙烯分子中 1b_{3g}的 d – like 轨道低动量区电子动量分布的上翘现象是由 于分子中扭曲波效应的作用而产生的.然而,由于多 原子的分子体系中存在多中心问题,扭曲波效应对 分子体系的计算在目前理论框架下还无能为力.

我们在新的谱仪中得到的乙烯分子 1b_{3g}轨道的 结果,是首次在大范围改变入射电子能量的条件下, 对分子体系低动量区上翘效应进行的系统实验研 究.研究得到了 d – like 轨道低动量区上翘效应与入 射电子能量的依赖关系,从而证实了分子体系中 d – like 轨道由于扭曲波效应而产生其低动量区动量 谱的上翘现象.同时,实验测量结果为分子扭曲波理 论的建立提供了实验依据.

参考文献

- [1] Weigold E, McCarthy I E. Electron Momentum Spectroscopy. New York : Kulwer Academic / Plenum Publishers , 1999
- [2] Brion C E. Int. J. Quantum Chem. , 1986 , 29 : 1397
- [3] McCarthy I E , Weigold E. Rep. Prog. Phys. , 1991 , 54 789
- [4] Mazevet S , McCarthy I E , Zhou Y J. J. Phys. B , 1996 , 29 : L901
- [5] Ren X G, Ning C G, Deng J K et al. Chem. Phys. Lett., 2005, 404:279
- [6] Brion C E , Zheng Y , Rolke J et al. J. Phys. B , 1998 , 31 : L223
- [7] Brunger M J, Braidwood S W, McCarthy I E et al. J. Phys.
 B, 1994, 27: L597
- [8] Hollebone B P, Nevill J J, Zheng Y et al. Chem. Phys., 1995, 196 13. Q
- [9] Brion C E, Cooper G, Feng R et al. Conference Proceedings, Correlations, Polarization, and Ionization in Atomic Systems. 2002, 604:38
- [10] Ren X G, Ning C G, Deng J K et al. Phys. Rev. Lett., 2005, 94:163201
- [11] Ren X G , Ning C G , Deng J K et al. Rev. Sci. Instrum. , 2005 , 76 :063103
- [12] Ren X G , Ning C G , Deng J K et al. Chin. Phys. Lett. , 2005 , 22 :1382
- [13] Migdall J N, Coplan M A, Hench D S et al. Chem. Phys., 1989, 57:141

物理新闻和动态。

核分子 :自然界中最小的哑铃

......

间距小于纳米量级的一个氧分子是一个小型的哑铃,它是利用两个绕着核飞行的电子的作用键合成的一个分子结构. 最近由英国的 Birmingham 大学、比利时的 Catholique de Louvain 大学和 Leuven 大学、法国的 de Caen 大学以及克罗地亚的 Rudjer Boskovic 研究所共同组成的国 际联合研究组的科学家们成功地制作了一个更小的核分子哑铃. 这是一个由两个 α 粒子利用两个绕动飞行的中子构成的一个核分子结构 ——铍 – 10 核分子,它呈现为一个哑铃结构,结构的间距只有几个飞米.

这种椭圆形的微小核分子是用一束氦 -6 核去撞击氦 -4 原子气体所得到的 ,氦 -6 核是一个新颖的核 ,它是通过用质子射入锂原子来制 作的 ,铍 -10 核分子的生存时间不太长 ,它的寿命时间只有 10⁻²¹ s 左右 ,通常它们会迅速地分解为氦 -4 与氦 -6 碎片. 联合研究组的科学家 M. Freer 指出 :铍 -10 核分子结构的存在有力地支持了一种科学观点 ,即有时核的行为是与原子系统的行为很相似 ,它们也可以看成是由一个 中心核与围绕着它的'价粒子 "间不断相互交换所组成 ,这里的'价粒子 "一般是指电子或中子. 有一些特殊的核分子结构可以存在于某些较轻 的核内 ,例如碳 -12 可以用三个 α 粒子组成一个三角形排列的构型 ,氧 -16 可以由四个 α 粒子组成四面体构型 ,而且这些构型非常紧密 ,因 此它们的这种几何构型很难被认识和观察到. 但铍 -10 核分子的扁长的形态在衰变系统中通过旋转行为很容易被观察.

(云中客 摘自 Physical Review Letters)