单分子的光学探测*

贾锁堂 肖连团[†]

(量子光学与光量子器件国家重点实验室 山西大学物理电子工程学院 太原 030006)

摘 要 介绍了三能级结构单分子光子源的工作原理,研究了利用 Hanbury-Brown-Twiss 探测方法,记录两个单光 子计数器响应的单分子光子源输出的每一个事件,分析单事件的光子统计概率 P(n,n=0,l2)与 Mandel 参数.研究 结果表明,当信号背景比 SBR > 2.41 时 P(2) < $(2 - \sqrt{4 - 2n})^2/2$ 是判别单分子的充分条件,n为每个激发周期内 探测到的平均光子数.

关键词 单分子,单事件, Mandel参数, 光子统计

Optics detection of single molecules

JIA Suo-Tang XIAO Lian-Tuan[†]

(State Key Laboratory of Quantum Optics and Quantum Optics Device College of Physics and Electronics Engineering Shanxi University, Taiyuan 030006, China)

Abstract The principle of single photon source based on three-levels single molecule is introduced. By use of Hanbury-Brown-Twiss method, the photon statistics P(n, n = 0, 1, 2) and the Mandel parameter are analyzed by recording of every photo-electrical event from the single photon source. When signal to background ratio SBR > 2. 4, an efficient method to distinguish single molecules by the double-photon statistics probability P(2), which shows $P(2) < \frac{1}{2}(2 - \sqrt{4 - 2n})^2$, is presented. Here n is the mean photon number.

Keywords single molecule , single event , Mandel parameter , photon statistics

多年来,人们对微观世界的观测和研究一直建 立在系综平均的基础上.直到 20 世纪 80 年代扫描 隧道显微镜(STM)、荧光探针方法、光镊技术等的出 现,进而单分子科学的形成与发展,才使人们得以实 现在分子尺度上观察和操纵物质世界.在最近十年 来,单分子的研究由于在物理、化学及生物学中的广 泛应用前景引起了人们的极大兴趣.在一个典型的 系综实验中,单分子系统的不同动力学特性被大量 平均,测量结果是相关参数的平均值.在应用单分 子光谱研究单分子系统的动力学过程时,发现了许 多新颖的实验现象^[12],包括单分子光谱线形的随 机变化、荧光间断现象、光子聚束和反聚束现象等. 单分子光谱不含有任何系综平均,从而包含非常精 细的分子动力学性质的信息.

高效单光子源的发展是量子计算、量子密码术 以及量子网络等形式的量子信息处理的重要前提条 件.基于分子的单光子源的主要特点^[3]:由于染料 分子荧光的寿命为几个纳秒,单分子光子源能够应 用到较高速率(约100MHz);通过选用合适的基底 材料,可使背景辐射光子强度水平极低(信号背景 比达20);在室温下工作的染料分子单光子源与其 他在低温下工作的单光子源相比,在制作应用和荧 光效率上都具有十分明显的优势.2000年,法国 Bordeaux 第一大学的 Lounis 等进行了室温下单分 子的研究^[4].他们把单个并五苯分子(terrylene)单 分子植于 P – 三联苯(p-terphenyl)晶体薄片中,把光 子的收集效率提高到4%.这种形式的样品结构在 室温下具有较高的光稳定性,因为大气中的氧气是 导致染料分子光漂白的主要因素,把染料分子嵌入 到晶格结构中从而与大气中的氧气隔离.由于晶体 的吸收和散射,他们获得的信号背景比(SBR)为5 左右.法国国家科学中心 Cachan 高等师范学院的 Roch 研究小组^[5]通过用聚甲基丙烯(PMMA)聚合

 ^{*} 国家自然科学基金(批准号 60378004)、教育部博士点基金(批 准号 20040108002)和山西省留学基金资助项目
 2005 - 11 - 11 收到初稿 2006 - 02 - 13 修回

[†] 通讯联系人. Email:xlt@sxu.edu.cn

体薄膜代替 p-terphenyl 晶体,对 terrylene 染料分子 荧光光子的收集效率达到 5%,把信号背景比提高 到 20.研究发现了 terrylene 单分子荧光的两个非经 典特性:反聚束效应和亚泊松强度分布特性,因而是 一种较理想的非经典光源.这种在室温下工作的染 料分子的单光子源与其他在低温下工作的量子点, LED 电子空穴隧道等单光子源相比,无论在制作还 是在应用上都具有十分明显的优势.

1 单分子的光学探测原理

脉冲激光激发下三能级分子产生单光子能级结 构如图1所示,单分子在一个超短(与荧光寿命相 比)的激光脉冲激励下,被抽运到电子激发态 S₁的 一个振动能级上 经过无辐射过程很快弛豫到 S₁ 的 最低振动能级上^[6]. 然后,分子经过一个具有能量 辐射的退激励过程 回到基态的振转能级 在这个过 程中,同时伴随着发射一个荧光光子.分子最终快速 地弛豫回到基态 S₀ 的最低振动能级. 在同一个激发 脉冲内,如果发射一个以上的光子,分子需要经历一 个再激发过程,实现再激发和辐射循环.如果激励脉 冲的持续时间远小于分子激发态寿命 这种再激发 过程的概率是非常小的. 例如选用持续时间约为 150fs 的激励脉冲,分子激发态寿命为 2.6ns 时,产 生再激发的概率小于 5 × 10⁻⁵. 与关联的背景光(如 由单分子光子源基底材料发出的残余荧光)相比 较 这个数值是可以被忽略的. 如果希望在每一个脉 冲激发下单分子只辐射一个光子 激光脉冲重复周 期须远大于分子激发态寿命,以保证在下一个激发 脉冲之前,分子有足够的时间弛豫回到基态.这样在 超短光脉冲激发下,单分子最多每次只能发射出一 个光子 从而形成了触发式单分子光子源.

处于三能级系统荧光分子,除了在基态 S_0 和激 发电子态 S_1 之间进行跃迁发出光子外,分子还有较 小的几率(~10⁻³)跃迁到暂稳态 T_1 . 如图 1 所示, 当分子布居于暂稳态 S_0 至 S_1 之间的跃迁就不会发 生,荧光就会暂时中断. 只有从 T_1 态弛豫到 S_0 态或 S_1 态,分子才会继续进行被激发 – 辐射循环. 实验 中测到的零光子事件除了由探测器的非理想量子效 率(小于 1)引起外,还会受到单分子布居于暂稳态 不发射光子的影响.

利用共焦显微技术对工作在室温下的单分子进 行光激发及探测⁷¹,可以对单分子发射的光子有较 高的收集效率和对光背景噪声有效抑制.

图 1 脉冲激光激发下三能级分子产生单光子能级 结构(S₀ 是单分子基态;S₁ 是单分子电子激发态; k_{iac}为分子由S₁ 到 T₁ 的跃迁几率;k_T 为分子由暂 稳态 T₁ 弛豫到S₀ 的速率)

实验中通常采用基于电磁场理论的 Hanbury-Brown-Twiss (HBT)⁸¹结构,如图 2 所示,测量分子 荧光的关联特性.HBT 装置中包含两个单光子探测 器 SPCM(如雪崩光电二极管、光电倍增管等).这两 个 SPCM 分别安装在一个 50/50 非偏振分光棱镜的 两侧.利用 HBT 结构进行相关测量,能够得到两个 不同时空点光场强度起伏的关联特性,即二阶相关 效应,这种对光场量子统计特性的测量能够用于对 光场压缩态的研究.但是通常用于光场强度自身的 相位关联测量的经典相干实验,只能够用来描述光 场的一阶相关效应,不能用于二阶或更高阶量子统 计性质的测量.

图 2 基于 HBT 结构的光子统计测量 (a)二阶关联函数 测量(SMPS 为单分子光子源,BS 为 50/50 非偏振分束器, SPCM 为单光子探测器,TAC 为时间幅度转换器,MCA 为多 通道分析仪,PC 为计算机)(b)单事件测量,取样时间 τ_g , 单光子探测器死区时间 τ_d ,激发脉冲周期 τ_r 满足 $\tau_g < \tau_d < \tau_r$

图 2 (a) 中的二阶关联函数测量是利用开始 – 停止技术的时间间隔分析仪得到的,二阶关联函数 曲线同时反映了光分束器两侧检测到的光子对的时 间延迟函数.根据单光子态量子特性方面的基本性 质,零延迟点反聚束效应的出现^[9]表明光检测区域 内仅包含有一个染料分子并有单光子发射现象产生.

图 2(b)为单事件测量方法.为了有效地探测单 光子,同时尽可能多地降低背景信号与探测器光子 辐射的影响^[10],需要在每个脉冲周期中设定一个取 样时间门进行同步探测.假设这个门从每个脉冲开 始激发分子的时刻开始,持续时间为₇,探测器在 这段时间内探测到的光子为有效信号.由于每一个 探测通道都存在死区时间(探测器和信号处理电路 的恢复时间,一般约为几百 ns),直接探测到的光子 数结果与光子源辐射光子数之间存在非线性关系.

为了避免对由死区时间的影响进行非线性修 正,鉴于工作在光子计数模式下的单光子探测器,在 小于死区时间的时间窗口内探测到的光子计数不能 超过一个,在测量中设置取样时间 τ_g ,单光子探测 器死区时间 τ_d ,激发脉冲周期 τ_r 满足 $\tau_g < \tau_d < \tau_r$, 那么单光子探测器在一个取样周期内最多只能探测 到一个光子,因此在 HBT 测量方式下只能探测到零 延时时刻的单事件光子数n = 0,1,2的统计概率 P(0), P(1)和P(2), 这里 P(0) = P(00), P(1)= P(10)和 $P(2) = P(1,1), P(i_j)$ 表示两个探测 器分别探测到i, j个光子j, j = 0或1.而P(n, n > 2)的信息被丢失.

2 单分子光子源单事件测量的光子统计

在 HBT 测量方式下,设 pⁱ(n)为光子源经过分 束器后 n 个光子到达探测器上的统计概率,经过探 测后得到的单事件测量统计分布为:

$$P(0) = P(0|0) = P'(0),$$

$$P(1) = P(1|0) = \sum_{n \ge 2}^{\infty} P'(n) \frac{1}{2^{n-1}}, \quad (1)$$

$$P(2) = P(1|1) = \sum_{n \ge 2}^{\infty} P'(n) \frac{1}{2^{n-1}}, \quad (1)$$

$$P(2) = P(1,1) = \sum_{n \ge 2} P'(n) (1 - \frac{1}{2^{n-1}}).$$

对应一个周期内探测到的单事件平均光子数为

$$\bar{n} = P(1) + 2P(2).$$
 (2)
Mandel 参数 $Q = \frac{n^2 - \bar{n}^2}{\bar{n}} - 1^{[11]}$,是用来描述

光子数涨落的物理量参数 ,其中 为平均值. 由单 事件光子数的统计概率计算得到单事件 Mandel 参 数Q为

$$Q = \frac{2P(2)}{\bar{n}} - \bar{n} , \qquad (3)$$

 \bar{n} 为每个激发周期内探测到的平均光子数. 可见,在 相同的平均光子数 \bar{n} 下, *P*(2)越大, *Q* 值越大,光源 的稳定性越差. 对应理想的单分子光子源(SPS),在 每个激发脉冲周期内有而且只有一个光子产生, *P*(2)=0, \bar{n} =1,此时*Q*=-1为最小值.

实际的单分子光子源是由理想的单分子光子源 和泊松统计分布的背景光构成^[7],探测得到的光子 由信号光*S* = \bar{n}_{s} = $\eta_{s}(\eta_{s}$ 为总效率,包括由于分子 布居于暂稳态时荧光暂时中断以及探测器的量子效 率的共同作用)与满足泊松统计概率 p(n) = $\frac{\alpha^{n}}{n!}e^{-\alpha}(n = 0, 1, 2...)的背景光 B = \bar{n}_{c} = 2(1 - e^{-\alpha/2})(\alpha)$ 为每个激发脉冲周期内泊松光的平均光子 数)组成,由(1)(2)式可知,实际单分子光子源产 生的光子统计概率为

$$P(0) = (1 - S)(1 - \frac{B}{2})^{2},$$

$$P(1) = (S + B - SB)(1 - \frac{B}{2}), \quad (4)$$

$$P(2) = \frac{BS}{2} + \frac{B^{2}}{4} - \frac{B^{2}S}{4}.$$

在满足 P(1)≫2√P(2)-3P(2)的条件下,可 以获得相应 SBR 的表达式:

SBR =
$$\frac{P^2(1)}{2P(2)}$$
 (5)

上式可以直接应用于实际单分子光子源信号背景比 的测量.

3 基于光子统计的单分子判别

判别单分子系统的普遍办法是基于标准的 HBT 测量结构 利用开始 – 停止的方法测量光激发 单分子的荧光光场的二阶相关函数 $g^2(\tau)$. 当入射 光子场为数态|n 态时,二阶相关度 $g^{(2)}(0)=1-\frac{1}{n}$ ($n \neq 0$),理想单分子光子源是n = 1的数态, $g^{(2)}(0)=0$. 而双分子的光辐射是 n = 2 的数态, $g^{(2)}(0)=0.5$,因此取二阶相关度为0.5 作为单分 子与双分子的判别界限. 当 $g^2(0)=0$ 光源为理想 单分子系统 $g^2(0) \ge 0.5$ 时光源为双分子光子源或 多分子光子源. 然而在实验中由于背景信号的影响, $g^{2}(0)$ 不可能为零^[5],实际上只要满足 $g^2(0) < 0.5$, 光子源就被认为是含有背景信号的实际单分子系统.

这里,我们同样设置一个无背景信号的理想双 分子光子源作为参考,假设 $Q_{\rm D}$ 与 $P_{\rm D}$ (2)分别为理 想双分子光子源的 Mandel 参数与双光子统计概率. 由(4)式得知,在相同的平均光子数时,如果所测光 子源的 Mandel 参数 $Q < Q_{\rm D}$,即 P(2) < $P_{\rm D}$ (2),可以 确定所测光子源为单分子.

由(1)(2)式,理想双分子光子源的单事件测 量光子统计概率为

$$P_{\rm D}(0) = (1 - \eta_{\rm D})^2 ,$$

$$P_{\rm D}(1) = 2\eta_{\rm D} - \frac{3}{2}\eta_{\rm D}^2 ,$$

$$P_{\rm D}(2) = \frac{1}{2}\eta_{\rm D}^2 .$$
(6)

 $\eta_{\rm D}$ 为理想双分子光子源总探测效率.在实际光子源

与理想双分子具有相同的平均光子数时,当*P*(2)< *P*₀(2),由(4)(6)式得

$$P(2) < \frac{1}{2}(2 - \sqrt{4 - 2\bar{n}})^2$$
, (7)

即可认为该光子源为单分子系统.

然而,这里的前提条件 *P*(2) < *P*_D(2)只包含存 在低背景信号的情况.对于可能存在的强背景信号, 即使是单分子系统也可能存在 *P*(2) > *P*_D(2).因此 为了分析背景信号的影响,需要进一步确定实际单 分子光子源在满足(7)式时 SBR 的变化范围.

对应(7)式,由(4)与(5)式相应得到根据(8) 式,可给出实际单分子光子源的 SBR 随平均光子数 ⁿ的变化曲线,如图3所示.可以看出,当平均光子

SBR > SBR₀ =
$$\frac{\sqrt{\bar{n}^2 - 2(2 - \sqrt{4 - 2\bar{n}})^2}}{\bar{n} - \sqrt{\bar{n}^2 - 2(2 - \sqrt{4 - 2\bar{n}})^2} - \frac{1}{2}(\bar{n} - \sqrt{\bar{n}^2 - 2(2 - \sqrt{4 - 2\bar{n}})^2})^2}$$
. (8)

数从 0→1 变化时 ,SBR₀ 值处在 1.63—2.41 的范围 之间. 可以说明 ,当 SBR(\bar{n}) < SBR₀(\bar{n})时 ,具有相 同平均光子数的实际单分子光子源和理想双分子光 子源的 Mandel 参数 Q 满足 Q < Q_D.特别在 SBR 大 于 2.41 时 (7)式成为单分子光子源的判据.相反 , 当 SBR(\bar{n}) < SBR₀(\bar{n})时 ,低信号背景比的实际单 分子光子源不满足(7)式.可见信号背景比不仅是 决定光子源质量的一个重要指标 ,同时也是判定单 分子的重要参数.不过目前单分子光子源实验中的 SBR 值都大于 SBR₀ 的范围 ,如前所述 ,单分子光子 源的信号背景比已经被提高到了 20^[57].

图 3 实际单分子光子源的 SBR 随平均光子数 *n* 的变 化曲线(阴影部分以外区域,SBR > SBR₀,为符合判据 (7)式的单分子光子源)

4 结论

在基于标准的 HBT 测量方式下,通过分析比较 具有泊松统计背景的实际单分子光子源与理想双分 子系统的光子统计特性(即在具有相同平均光子数 *n* 时的 Mandel 参数),给出利用光子统计概率判别 单分子的方法.这种单分子光子源依赖于信号背景 比与光子统计的分析结果同时也适用于单原子、量 子点等其他单光子源的研究.下一步我们将通过利 用光谱测量单分子系统的光物理参数,研究单分子 高光稳定性工作的环境及条件.在进一步提高光子 收集效率和信号背景比的情况下,进行高稳定性单 分子的光谱动力学特性的研究.

参考文献

- [1] Messin G, Hermier J P, Giacobino E et al. Opt. Lett. ,2001, 26:1891
- [2] Yang Haw , Xie X Sunney. Chem. Phys. , 2002 , 284 : 423
- [3] Lounis B , Orrit M. Rep. Prog. Phys. , 2005 , 68 :1129
- $\left[\begin{array}{c} 4 \end{array} \right]$ Lounis B , Moerner W E. Nature , 2000 , 407 :491
- [5] Treussart F, Alleaume R, Xiao L T et al. Phys. Rev. Lett., 2002, 89:093601
- [6] Moerner W E. New J. Phys. ,2004 ,6:88
- [7] Alleaume R , Treussart F , Courty J-M et al. New J. Phys. , 2004 , 6:85
- [8] Hanbury Brown R , Twiss R Q. Nature , 1956 , 177 :27
- [9] Verberk R , Orrit M. J. Chem. Phys. , 2003 , 119 : 2214
- [10] Xiao L T , Zhao Y T , Huang T et al. Chin. Phys. Lett. , 2004 , 21 :489 ; Huang T , Shao J H , Wang X B et al. Opt. Eng. , 2005 , 44 :074001
- [11] Mandel L. Opt. Lett. , 1979 , 4 205