亚波长直径光纤的光学传输特性及其应用*

童利民[†] 潘欣云

(浙江大学光电系 现代光学仪器国家重点实验室 杭州 310027)

摘 要 通过高温下的物理拉伸方法,可以直接将玻璃材料拉细成亚波长或纳米直径的光纤。所获得的光纤具有 很好的直径均匀度和表面光滑度,可用于低损耗光传输,并可在可见和近红外光学传输中表现出强光场约束、倏逝波 传输和大波导色散等特性,在光通信、传感和非线性光学等领域具有良好的应用前景。 关键词 光学,亚波长,微纳光纤,倏逝波

Subwavelength-diameter optical fibers : waveguiding properties and photonic applications

TONG Li-Min[†] PAN Xin-Yun

(Department of Optical Engineering, and State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China)

Abstract By means of high-temperature physical drawing , glasses can be directly drawn into subwavelength-or nanometer-diameter fibers. As-fabricated nanofibers show excellent diameter uniformity and surface smoothness for low-loss optical wave guiding , and may exhibit a series of interesting properties such as tight optical confinement , evanescent guidance and high waveguide dispersion. These fibers provide promising building blocks for photonic applications in optical communications , optical sensing and nonlinear optics.

 ${\color{black} Keywords} \qquad {\color{black} optics} \ , subwavelength} \ , nanofiber \ , evanescent \ wave$

1 引言

作为光子学、电子学、化学和生物学领域中的基本材料之一 玻璃相对于其他材料(例如晶体)在制备 方法和光学特性等方面具有突出的优势,而且对于很 多掺杂离子来说,都是极好的溶剂。最近,玻璃低维 结构(例如一维的微纳光纤),在微纳尺度的光子学领 域引起了广泛的研究兴趣。与目前已经报道的使用 其他制备方法(例如电子束刻蚀、化学生长和纳米压 印等)制备的低维玻璃结构相比,使用高温拉伸法从 玻璃或玻璃光纤直接拉制的亚波长直径微纳光 纤^[1-5] 表面粗糙度可以低至原子量级,直径非常均 匀,光传输损耗远远小于其他类型的亚波长尺度光波 导,可表现出强光场约束、大比例倏逝波传输和大波 导色散等特性^[6],在微纳光子器件、光学传感、非线性 光学和原子波导等方面具有潜在的应用价值。

2 低损耗亚波长直径光纤的制备

早在 19 世纪 80 年代,英国科学家 Boys 等人就 报道过从高温熔融的矿石中拉制玻璃细线,并研究 他们的机械特性和用途^[7 8],当时他们将这些玻璃 细线绕成线圈,作为推动电流计指针的弹簧。但是, 直到上世纪六、七十年代后,人们才开始考虑从玻璃 光纤拉制的细线的光学用途^[9—12]。最常用的制备 方法是使用激光或火焰加热玻璃光纤,待光纤软化 后拉成细纤,使用这种方法拉制的细纤直径一般为 几微米,大于传输光的波长,一般情况下是多模光 纤。如果要单模工作,必须将光纤的直径减小到波

通讯联系人. Email:phytong@ zju. edu. cn

 ^{*} 国家自然科学基金(批准号 60378036)和国家杰出青年科学基金(批准号 60425517)资助项目
2007-01-05 收到初稿 2007-07-06 收到修改稿

长量级以下。但理论和实验的结果均表明^[13,14],用 于拉制直径均匀的亚微米直径光纤所需的激光能量 要求过大,实际上难以实现,如果使用火焰加热拉制 微纳光纤,火焰的紊流和空气的对流等因素影响拉 区温度分布的稳定性,以至于使用一步拉伸的方法 难以得到直径小于200nm的均匀光纤。

2003 年,我们使用火焰加热两步拉伸的方法^[4],从玻璃光纤拉制出了直径均匀性很好的微纳 光纤。两步拉伸的方法如图 1 所示。首先,使用一 步拉伸法将光纤拉细至微米量级。然后,为了在拉 伸区域得到一个稳定的温度分布,我们用一个尖端 直径大约为 100μm 的蓝宝石光纤锥来吸收火焰的 能量,蓝宝石光纤的热惯性在光纤拉伸过程中起到 保持温度稳定的作用。将微光纤的一端绕在蓝宝石 光纤锥上并放置于火焰边缘处,调整火焰至合适温 度(约 2000K),就可以进一步将光纤拉细至纳米量 级。拉伸速度一般为1—10mm/s。

图1 二步拉伸法制备微纳光纤的示意图(图片引自文献1])

使用这个方法制备的光纤直径最小可达到 50nm。微纳光纤的典型显微形貌如图 2 所示:图 2 (a)是一根直径为 260nm、长度为 4mm 的光纤的扫 描电子显微镜 SEM)照片,光纤盘在一块硅片上以 显示它的长度。直径测量结果表明,这根光纤在整 个 4mm 长度 L 内的最大直径波动 ΔD 约为 8nm,即 直径均匀度为 $\Delta D/L = 2 \times 10^{-6}$ 。从图 2(b)—2(d) 也能够看出其他直径的微纳光纤同样具有很好的直 径均匀性。图 2(e)和 2(f)分别是 240nm 和 330nm 直径光纤的透射电子显微镜(TEM)照片,从图中可 看出,即使在高倍电子显微镜下,光纤的表面也看不 出明显的缺陷。典型的表面粗糙度测量值(均方 根)小于 0.5nm。从上述显微形貌来看,这些光纤的 直径均匀度和表面粗糙度要比其他方法制备的一维 结构好得多。

虽然上述高温拉伸方法可以很容易地制备高质 量的微纳光纤,但是由于需要使用玻璃光纤作为原

图 2 (a) 一根直径为 260 nm、长度为 4 mm 的光纤的 SEM 照 片(b) 至(d) 是直径为 50 nm 到 1000 nm 左右的典型微纳光纤 的 SEM 照片(e)和(f) 直径分别为 240 nm 和 330 nm 的光纤的 TEM 照片(图片引自文献 1])

材料,所以可用以制备微纳光纤的材料就受到限制。 最近,我们使用局域熔化玻璃材料直接拉制微纳光 纤^[6],已经从诸如磷酸盐、碲酸盐、硅酸盐玻璃等材 料中制备出低损耗微纳光纤(直径最小达到50nm 左右),大大扩展了微纳光纤的种类和功能。例如 高折射率的碲酸盐微纳光纤可以提供比石英玻璃微 纳光纤强得多的光场约束能力,稀土掺杂微纳光纤 可用于制备有源光子器件。另外,该方法还可以使 用毫克量级的玻璃碎片或粉来拉制微纳光纤,减小 了对原材料的量的要求。

3 亚波长直径光纤的光学传输特性

虽然人们对传统光纤的光学传输特性已经进行 了很好的研究,但是以前很少考虑光纤直径小于传 输光的波长的情况。从理论上来说,如果已知材料 特性,亚波长直径光纤的光学传输特性可以通过严 格求解 Maxwell 方程得到^[15]。由于光纤的尺度很 小,必须使用 Maxwell 方程的精确解。

在柱坐标系中求解具有理想圆柱对称的微纳光 纤模型的步骤如下^[6,15]:假定光纤长度足够长,光纤 内部折射率均匀分布,外部为空气或水等均匀折射 率环境。由于光纤的直径一般大于10nm,所以仍然 可以假定微纳光纤的折射率与大块玻璃一致。在这 些前提条件下,将试探解代入 Maxwell 方程并结合 圆柱对称的边界条件后,就可以得到关于传播常数 的本征方程。使用计算机数值求解,就可以得到传 播常数的数值解,进而可以计算出微纳光纤中光的 传导模式、单模条件、电场和能量分布、群速度以及 波导色散等一系列传输特性。

通常,要使空气中的微纳光纤单模工作,即只支 持基模(HE₁₁模)传输,光纤的直径必须小于传输光 的波长。例如,对于常用的波长为633nm的He – Ne 激光,氧化硅光纤(折射率约为1.46)的直径必 须小于460nm才能单模工作;对于高折射率的碲酸 盐光纤(折射率约为2.05),单模工作要求直径小于 270 nm。

微纳光纤中传输光场能量的典型空间分布(坡 印亭矢量)如图 3 所示,光纤直径分别为 200nm 和 400nm 材料为氧化硅,传输光的波长为 633nm,其 中圆柱光纤内部为被约束的传导电磁场,外部为被 约束在光纤周围空气中的倏逝场。对于 400nm 直 径的光纤,大部分光能量在光纤内部传输(约占 72%),显示出微纳光纤对传输光场的强约束能力, 对于研制小尺寸光子器件和发展高密度光学集成十 分有利;当光纤直径减小到 200 nm 时,大部分(大 于 90%)光能量转移到光纤表面附近区域,以围绕 光纤的倏逝波形式传输,这种大比例倏逝波传输的 特性在光学耦合和传感等应用中具有独特的优势。

图 3 直径分别为 200 nm 和 400 nm 的光纤传输波长为 633 nm 的光时沿传输方向的坡印亭矢量

另外,波导色散的计算结果表明⁶¹,微纳光纤 的波导色散可以达到 ns/nm/km 量级,比一般光纤 大1到3个数量级,而且零色散波长随直径的减小 而减小,使其在与色散相关的光通信和非线性光学 等领域具有潜在的应用价值。

在实验上,我们可以利用倏逝波耦合的方法将 光输入微纳光纤,并测量微纳光纤的传输损耗。如 图4(a)所示,首先将光输入一端拉锥的普通光纤,

将拉锥形成的微纳光纤与待测微纳光纤平行靠近, 当静电力或范德瓦尔斯力将其吸附在一起时,光就 可以自然地从拉锥光纤中输入待测的微纳光纤中。 图 4(b) 是一根直径为 390nm 的光纤通过倏逝波耦 合将 633nm 的 He – Ne 激光输入到另一根直径为 450nm 的光纤的光学显微照片 从图中可以看出 相 当一部分光已经通过耦合在两根光纤之间实现了转 移。图 4(c) 是一根直径为 360nm 的光纤传输 633nm 波长激光的照片 ,光在右端被另外一根直径 为 3μm 的支撑光纤拦截而产生散射,从交点处的散 射强度可以看出,光纤中传输的能量远远大于光纤 其他部分的表面散射。图 4(d)是一根直径为 550nm 的光纤传输 633nm 波长的激光 ,左半部分在 空气中,右半部分放在 MgF, 晶体表面,因为 MgF, 的折射率(约为1.39)比氧化硅(约为1.46)低,光 纤从空气达到 MgF。 晶体后 ,激光被继续约束在光 纤周围沿 MgF, 晶体表面传输。另外, 使用超低折 射率材料(如气凝胶)作为支撑衬底 ,光纤直径还可 以远小于波长[16] 表明微纳光纤与低折射率衬底集 成的可能性。

图4 (a)利用倏逝波耦合将光输入微纳光纤的示意图 (b)一 根直径为 390 nm 的光纤通过倏逝波耦合将 633 nm 的 He - Ne 激光输入到另一根直径为 450 nm 的光纤的光学显微照片 (c) 一根直径为 360 nm 直径的光纤传输 633 nm 波长激光的照片,光 在右端被另外一根直径为 3 μ m 的支撑光纤拦截而产生散射; (d)一根直径为 550 nm 的光纤传输 633 nm 波长的激光,左半部 分在空气中,右半部分放在 MgF₂ 晶体表面(图片引自文献 [1])

利用图 4(a)所示的耦合方式还可以测量微纳 光纤的传输损耗。初步测试结果表明,对于单模运 行的微纳光纤,在材料的透明波段,光损耗值可低于 0.1dB/mm^[1]。最近,英国 Southampton 大学和 Bath 大学的研究人员在进一步改进制备和测试条件后, 在 1.55μm 波长处获得了低于 0.01dB/mm 的单模 传输损耗^[2,3]。与其他类型的亚波长直径光波导 (如表面等离子体波导)相比,微纳光纤的损耗一般 可以低 1 到 5 个数量级。

4 亚波长直径光纤的应用

由于微纳光纤具有小尺寸、低光学损耗、强光场 约束、倏逝波传输、大波导色散、抗拉强度高和易于 弯曲等特性,并且可以保持传输光的相干性,所以在 光通信、传感和非线性光学等领域均具有潜在的应 用价值,特别是在减小器件尺寸、提高器件性能和集 成度等方面。

利用微纳光纤的小尺寸、强约束和倏逝波耦合 等特性,可以研制小尺寸的光子器件。图 5 是由碲 酸盐微纳光纤组成的 3dB 分支耦合器的光学显微 照片^[5]。所使用的两根微纳光纤的直径分别为 350nm 和 450nm,由于高折射率碲酸盐光纤对传输 光的约束能力很强,所以光纤在弯曲半径很小时弯 曲损耗仍然很低,并且可以使用普通的石英玻璃作 为有效的支撑衬底。结合插图中的 SEM 照片可以 看出,两根光纤之间通过 3μm 左右的重叠长度,就 可实现对 633nm 波长输入光的分束效应,并且在耦 合区基本上看不到散射损耗,可以作为微型的光纤 耦合器使用,器件尺寸远远小于常规的光纤耦合器。

图 5 由两根碲酸盐微纳光纤组成的 3dB 分支耦合器的光学显 微镜照片^[5]

选择合适的光纤直径和探测光的波长,使一定 比例的传输光能量以倏逝波形式在光纤外面传输, 通过测量光纤输出端的强度、位相或光谱等物理量 来判断光纤传输过程中所受到的外部影响,可以研 制成微纳光纤传感器。最近在这方面获得的一些研 究结果表明,微纳光纤传感器具有尺寸小、灵敏度 高、响应速度快等优良特性^[17-19]。 因为具有很低的光传输和弯曲损耗,使用微纳 光纤可以做成高品质的微型光纤环谐振腔。美国 OFS 实验室最近报道了一个使用直径约为 660nm 的氧化硅光纤制作的微环谐振腔^[20],微环直径约为 500μm,在1.5μm 的光通信波段测量得到的 Q 值高 于 10⁴,有希望应用于光通信和光传感等领域。

此外,微纳光纤在非线性光学和原子波导等方 面也具有潜在的应用价值。例如,英国 Bath 大学的 研究人员报道了在微纳光纤中产生超连续光谱的实 验结果^[3] 表明使用微纳光纤后抽运功率和光纤长 度均可以大大减小。日本和俄罗斯的研究人员研究 了使用微纳光纤的强倏逝场来约束冷原子的设 想^[21 22] 发现导光的微纳光纤可以对原子产生束缚 作用并可以用作原子波导。

5 结论和展望

利用物理拉伸法所获得的微纳光纤,具有其他 方法制备的类似结构所难以达到的直径均匀度和表 面光滑度,作为亚波长直径光波导工作时,可体现出 小尺寸、低光学损耗、强光场约束、倏逝波传输和大 波导色散等特点,已经在光耦合器、谐振腔、传感器、 超连续光谱产生等方面获得应用,并体现出独特的 优势。

由于这方面的研究才刚刚开始,目前对光纤的 材料、类型、功能调控和器件应用等还处于初步研究 阶段,进一步的深入研究将有可能获得具有各种特 定功能的微纳光纤及其复合导波结构,发展出一系 列基于微纳光纤的光通信、传感和非线性光学等微 纳光子器件,并为微纳光子学研究提供有力的工具。

参考文献

- [1] Tong L M , Gattass R R , Ashcom J B *et al*. Nature ,2003 ,426 :816
- [2] Brambilla G, Finazzi V, Richardson D J. Optics Express, 2004, 12:2258
- [3] Leon-Saval S G , Birks T A , Wadsworth W J et al. Opt. Express , 2004 , 12 :2864
- [4] Tong L M , Lou J Y , Ye Z Z et al. Nanotechnology , 2005 , 16 : 1445
- [5] Tong L M , Hu L L , Zhang J J et al. Opt. Express ,2006 ,14 :82
- [6] Tong L M , Lou J Y , Mazur E. Opt. Express , 2004 , 12 : 1025
- [7] Boys C V. Phil. Mag. , 1887 , 23 : 489
- [8] Threlfall R. On Laboratory Arts. London : Macmillan , 1898

前沿进展

- $\left[\begin{array}{c} 9 \end{array} \right]$ Love J D , Henry W M. Electron. Lett. , 1986 , 22 :912
- [10] Payne F P , Mackenzie H S. SPIE , 1991 , 1504 : 165
- [11] Knight J C , Cheung G , Jacques F et al. Opt. Lett. ,1997 ,22 :1129
- $\left[\ 12 \ \right]$ Bures J , Ghosh R. J. Opt. Soc. Am. A , 1999 , 16 :1992
- [13] Dimmick T E , Kakarantzas G , Birks T A et al. Appl. Opt. , 1999 , 38 :6845
- [14] Grellier A J C , Zayer N K , Pannell C N. Opt. Commun. , 1998 , 152 :324
- [15] Snyder A W , Love J D. Optical waveguide theory. New York : Chapman and Hall , 1983
- [16] Tong L M , Lou J Y , Gattass R R et al. Nano Lett. ,2005 ,5 : 259

- [17] Lou J Y , Tong L M , Ye Z Z. Optics Express , 2005 , 13 : 2135
- [18] Polynkin P , Polynkin A , Peyghambarian N et al. Opt. Lett. , 2005 , 30 :1273
- [19] Villatoro J, Monzón Hernández D. Optics Express, 2005, 13 :5087
- [20] Sumetsky M , Dulashko Y , Fini J M et al. Appl. Phys. Lett. , 2005 , 86 :161108
- [21] Balykin V I, Hakuta K, Kien F L et al. Phys. Rev. A ,2004, 70 :011401
- [22] Kien F L , Balykin V I , Hakuta K. Phys. Rev. A ,2004 ,70 : 063403

· 书评和书讯 ·

探索高等科教书店物理类书目推荐(Ⅳ)

作者	书名	定价	作者	书名	定价
Born and Wolf	光学原理 第7版(影印)	150.0	王之江	实用光学技术手册	180.0
Born and Wolf	光学原理 第7版 上下册)・杨葭荪 译	102.8	C. F. Klingshirn	半导体光学 第3版(影印)	118.0
M. H. Freeman	光学 第11版(影印)	86.0	张国雄	三坐标测量机	46.0
胡家升	光学工程导论 第二版	58.0	廖延彪	偏振光学	45.0
M. Mansuripur	经典光学及其应用(影印)	110.0	王永仲	现代军用光学技术	45.0
Fundamentals	相干光学(影印)	49.0	唐晋发	现代光学薄膜技术	29.0
廖延彪	光学原理与应用	49.0	孟克	光纤干涉测量技术	19.0
吕乃光	傅里叶光学 第2版	30.0	E. Hecht	光学 (第四版 (影印) · 张存林改编	86.0
J. W. Goodman	傅里叶光学导论 第 3 版 · 秦克诚 译	55.0	石顺祥	物理光学与应用光学	26.0
M. O. Scully	量子光学(影印)	98.0	张三喜	高速摄像及其应用技术	20.0
D. F. Walls	量子光学(影印)	55.0	M. Orszag	量子光学 - 降噪 囚禁离子 量子轨道和退相干	58.0
Leonard Mandel	光学相干性和量子光学(影印)	190.0	H. C. Lefèvre	光纤陀螺仪 · 张桂才 译	25.0
周海宪	全息光学 – – 设计制造和应用	68.0	刘祖平	束流光学	20.0
田芊	工程光学	48.0	李育林	空间光调制器及其应用	22.0
刘颂豪	光子学技术与应用(上下册)	380.0	H. P. Herzig	微光学 元件、系统和应用 · 周海宪 译	32.0
李桂春	气动光学	64.0	张逸新	随机介质中光的传播与成像	25.0
杨国光	近代光学测试技术	39.0	梁柱	光学原理教程	20.0
蔡立	光学零件加工技术 第二版	39.0	徐送宁	光学与近代物理引论	28.0
李晓彤	几何光学 · 像差 · 光学设计	29.5	钟锡华	现代光学基础	39.0
潘君骅	光学非球面的设计、加工与检验	28.0	吴燮灿	实用眼镜光学	75.0

我店以经营科技专著为特色,以为科技工作者和大专院校师生提供优质服务为宗旨,欢迎广大读者来店 指导或来电查询。

电话 010-82872662、62556876、89162848

网址 http://www.explorerbook.com 电子

邮箱 :explorerbook@ vip. 163. com

通讯地址 北京市海淀区海淀大街 31 号 313 北京探索高等科教书店

邮政编码:100080 联系人:徐亮、秦运良