介电体超晶格的研究*

闵乃本 朱永元 祝世宁[†] 陆亚林 陆延青 陈延峰 王振林 王慧田 何京良 (南京大学固体微结构物理国家重点实验室 南京 210093)

摘 要 介电体超晶格是一种新型的有序微结构材料. 它具有通常均质材料所不具有的独特优异性能 ,展现出重要的应用前景. 文章介绍了南京大学研究组关于介电体超晶格研究所取得的进展 ,如将多个光参量过程集成于一块 介电体超晶格之中获得了多波长激光同时输出 ,研制成超晶格全固态三基色激光器原型 ,在介电体超晶格中将拉曼 散射强度增强到 10⁴—10⁵ 倍 ,用超晶格研制的器件填补了体波超声器件从几百 MHz 到几千 MHz 的空白频段 ,发现了 微波与超晶格振动的强烈耦合以及极化激元(polariton)的激发与传播等.

关键词 介电体超晶格 ,准周期超晶格 ,准位相匹配 ,全固态白光激光器 极化激元

Dielectric superlattices

MIN(MING) Nai-Ben ZHU Yong-Yuan ZHU Shi-Ning[†] LU Ya-Lin LU Yan-Qing CHEN Yan-Feng WANG Zhen-Lin WANG Hui-Tian HE Jing-Liang (State Key Laboratory of Microstructures, Nanjing University, Nanjing 210093, China)

Abstract A dielectric superlattice is a type of material with an ordered microstructure. A series of results in this field have been obtained by our research group in Nanjing University. We proposed the theory of multiple quasi-phase-matching (QPM), developed all-solid-state lasers operating at multi-frequencies as well as white-light lasers, discovered a QPM enhanced optical scattering effect, and a new mechanism for optical bistability. We have also studied piezoelectric ultrasonic excitation and prepared bulk prototype ultrasonic devices working at frequencies from several hundreds megahertz to a few gigahertz, discovered the strong coupling between superlattice vibrations and microwaves, and investigated the excitation and propagation of polaritons.

Keywords dielectric superlattice , quasiperiodic superlattice , quasi-phase matching , all-solid-state white-light laser , acoustic superlattice , polariton

1 引言

半导体晶体中存在电子能带,通过能带设计与 裁剪,实现了电子调控,奠定了当代信息技术的基 础^[1]. 然而,光子能带不存在于均匀晶体中.

上世纪 70 年代,将周期微结构引入半导体晶体 构成半导体超晶格^[1].在这一成就的启发下,我 们于上世纪 80 年代初,将微结构引入介电晶体^[2], 构成介电体超晶格.超晶格的周期可和光波、超声波 的波长比拟.光波、超声波在介电体超晶格中传播, 就类似于电子在晶格周期势场中运动.于是,光子能带、声子能带及其他准粒子能带就出现在介电体超 晶格中^[3].

介电体中引入有序微结构,可以实现不同物理

- * 国家攀登计划:批准号 85-02-02 95-预-04-03、国家重点基础研究发展计划(批准号:G19980614 03,2004CB619003)、国家高技术研究发展计划(批准号 863-715-28-03-01 863-715-001-0200 2002AA31090 02-04)、国家自然科学基金(批准号:10534020)资助项目 2007-10-13 收到
- † 通讯联系人. Email zhusn@ nju. edu. cn

常数的有序调制. 介电常数(或折射率)周期调制的 介电体超晶格,称为光子晶体,具有光子能带^[4-6]. 弹性常数周期调制的称为声子晶体,具有声子能 带^[7]. 压电常数周期调制的称为离子型声子晶体 (ionic-type phononic crystals),具有极化激元能 带^[8-10]. 非线性光学常数被调制的称为准位相匹配 材料(quasi-phase-matching materials),在激光变频 方面有着广泛的应用^[11-13].

半导体晶格	介电体超晶格					
电子	光子	声子	极化激元			
晶格周期势场	介电周期结构	弹性周期结构	压电周期结构			
电子能带	光子能带	声子能带	极化激元能带			
信息技术	光电子技术	声电子技术	微波技术			

表1 介电体超晶格与粒子或准粒子能带

表1列举出半导体晶格和介电体超晶格所具有 的不同粒子(如电子和光子),准粒子(如声子和极 化激元)能带,周期结构的类型以及可能的应用领 域.我们期待介电体超晶格能像半导体超晶格一样, 通过不同能带的设计、裁剪,实现粒子、准粒子的调 控,对光电子技术、声电子技术以及微波技术作出贡 献.

1984 年发现了准晶^[14]. 1986 年我们将准周期 引入介电体超晶格. 周期超晶格只有一组倒格矢,只 能高效完成一个光参量过程. 准周期超晶格具有多 组倒格矢,能同时高效完成多个光参量过程. 我们于 1990 年建立了多重准位相匹配理论^[15]. 1995 年发 展了能够制备准周期介电体超晶格的室温电场极化 技术^[16]. 1997 年完成了实验验证,将两个光参量过 程高效地集成于一块准周期超晶格之中,实现了两 种波长激光同时输出^[17,18]. 2003 年实验上实现了超 晶格中三基色的产生^[19—21]. 2005 年研制成超晶格 三基色和白光全固态激光器原型^[22]. 此外,在光散 射的准位相匹配增强效应^[23,24]、高频超声激发^[25]、 微波与超晶格振动耦合^[8]等方面也有所发现.

从真空电子管到半导体场效应晶体管,实质上 是将电子发射、电子调控、电子收集诸过程,全固态 地集成于半导体微结构中.这一全固态集成,使实现 电子调控所需空间缩小了约7.2×10¹³倍,这为集成 电路四十多年来能按莫尔定律发展提供了可能.我 们关注于光电子学中的类似的全固态集成,如上所 述,将多个光参量过程集成于一块介电体超晶格之 中,这只是第一步.将不同的物理过程(如变频、会 聚、偏转、开关等)集成于一块有序微结构材料之 中,是我们的努力目标.

2 介电体超晶格的组成、制备与表征

介电体超晶格的组成:以有序铁电畴为例,简要 说明介电体超晶格的组成.属 3m 点群的铌酸锂 (LiNbO₃,LN),钽酸锂(LiTaO₃,LT)铁电晶体中,铁电 畴自发极化矢量,或是平行于z轴(正畴),或是反平 行于z轴(负畴).取一对正、负畴作为构造单元.如果 取一种构造单元重复排列,这就构成了周期超晶格, 如图 1(a)所示.如果取二种构造单元按 Fibonacci 序 列排列,这就构成了二单元 Fibonacci 准周期超晶 格^[26—31],如图 1(b)所示.通常用倒格矢来描述晶格 或超晶格.对周期超晶格,其倒格矢可表示为

$$G_{\rm m} = m \frac{2\pi}{\Lambda} g$$
 ($m = 1 \ 2 \ 3...$) (1)

式中 Λ 为超晶格结构参量,即超晶格周期 $g \in G_m$ 的单位矢量,垂直于畴界,见图 1(a). 当 m = 1, $G_1 = \frac{2\pi}{\Lambda} g$ 为超晶格的初基倒格矢. 在光参量过程中, 使用初基倒格矢,其转换效率最高. 对二单元 Fibonacci 准周期超晶格,其倒格矢可表示为

$$\boldsymbol{G}_{mn} = \frac{2\pi(\boldsymbol{m} + n\tau)}{\tau \Lambda_{\rm A} + \Lambda_{\rm B}} \boldsymbol{g} (\boldsymbol{m} \ \boldsymbol{\mu} = 1 \ 2 \ \boldsymbol{\beta} \ \boldsymbol{\mu} \dots) (2)$$

其中 $\tau = \frac{1 + \sqrt{5}}{2}$ 为黄金分割数 Λ_A 和 Λ_B 是超晶格结 构参量 g为 G_m的单位矢量,垂直于畴界,见图 1 (b). 可以看出,设计准周期超晶格,有更多的结构 参量可调 更多的倒格矢可选用.因而在一块准周期 超晶格中,可以同时高效地实现多个光参量过 程^[15,17,18].从理论和实验方面研究了二单元 Fibonacci 准周期超晶格的超声激发谱^[26]、激光倍频 谱^[27-29]和电光透射谱^[30].发现了超声谱结构的自 相似性 这是实空间结构自相似性在倒空间中的反 映. 而激光倍频谱和电光透射谱,由于折射率的色散 效应,谱结构的自相似性遭到破坏^[27-30].最近还研 究了极化激元的色散谱和介电谱,都得到了理论与 实验相符的结果^[31]. 对二构造单元按 intergrowth 序 列^[32]和按 Thue – Morse 序列^[33],三构造单元按准周 期序列构成的超晶格^[34—36],以及双周期^[37]、非周 期^[38,39]超晶格都进行了系统的研究.在此基础上建 立了设计介电体超晶格的专家系统 ,己能按需优化 设计介电体格超晶格.

通过构造单元的有序排列,实现了铁电畴自发 极化矢量的调制.现在简要说明,如何通过铁电畴自

图 1 超晶格的构造 (a)一种构造单元(A)无限重复就构成周 期超晶格 (b)两种构造单元(A和B)按 fibonacci 序列就构成准 周期超晶格¹¹⁻¹³

发极化矢量的调制实现物性常数的调制. 从图 1(a) 可以看出,构造单元是由一对正畴、负畴组成,其自 发极化矢量相反. 其中负畴的形成可想象为,将原为 正畴的第二片及描述物性张量坐标系的 z 轴,绕 x 轴相对于第一片旋转180°,故第二片畴中奇数阶张 量变号,而偶数阶张量将保持不变. 因而在这类超晶 格中,对应的三阶张量的如非线性光学常数、电光常 数、压电常数不再保持不变,而是空间坐标的函数, 属二阶张量的介电常数和属四阶张量的弹性常数在 整个超晶格中保持不变^[11].

介电体超晶格的制备:如何实现铁电畴自发极 化矢量的有序调制,我们发展了两种技术,就是生长 层技术和室温电场极化技术.前者用于制备周期性 超晶格,后者用于制备周期、非周期以及二维超晶 格.

晶体生长过程中,如果出现周期性温度起伏,就 出现周期性生长层,就如树木生长中出现的年轮.周 期性生长层是晶体(固溶体)中溶质浓度沿生长方 向的周期性分布^[40].通常溶质以离子状态存在于晶 体中,周期性溶质分布就等价于周期性空间电荷分 布,于是在晶体中产生了周期性内电场.在降温过程 中,当温度通过居里点时,即从顺电相向铁电相转变 时,该内电场将引起金属氧化物晶体(如LN,LT)中 在顺电相处于对称中心的金属离子(如Nb,Ta)沿*z* 轴的正向或反向的择优位移,这就决定了这类晶体 中铁电畴自发极化取向.于是在晶体生长过程中,人 为地引入周期性温度起伏,通过周期性生长层的产 生,实现了铁电畴自发极化矢量的周期调制,并发展 成制备周期超晶格的生长层技术^[41,42].

为了制备准周期超晶格,借用半导体平面工艺. 取一片 z 切割的单畴 LN 或 LT 晶片,在其上、下晶面 沉积金属膜作为电极.下晶面的金属膜为平面电极, 上晶面的金属膜通过半导体平面工艺刻蚀成具有周 期、准周期、或其他有序图案的电极,二电极与高压 脉冲发生器联结,如图 2(a)所示(图中 P_s为自变极 化矢量).在高压脉冲电场作用下,单畴晶片中的反 向畴首先成核于上电极界面处,逐步向下延伸.适当 选择脉冲强度、脉冲宽度和脉冲重复频率,可使反向 畴贯穿整个样品,获得与图案电极相同的有序畴结 构.这被称为室温电场极化技术^[16].图 2(b)(c) (d)是用该技术制备的周期、准周期和二维周期超 晶格,图 2(e)是具有特定图案的有序畴结构.该技 术能用于批量生产,图 2(f)表明晶片上同时制备的 多个相同和不同的超晶格.

图 2 制备超晶格的室温电场极化技术^[16] (a)室温电场极化 装置(b)周期超晶格(c)准周期超晶格(d)二维周期超晶格; (e)二维有序畴结构(f)超晶体的批量制备

介电体超晶格的表征:为了实现对介电体超晶格的无损检测,我们发展了两种表征技术,即介电常数与介电损耗的微波近场显微成像技术^[43],以及环境扫描二次电子成像技术^[44].

通常,可方便地测得体块材料的介电常数与介 电损耗,我们更关心局域表征.我们发展了介电常数 与介电损耗的微波近场显微成像技术,其分辨率达 亚微米量级.我们知道,介电极化来源于电子极化和 离子(位移)极化.在光频波段只有电子极化作出贡 献,而在微波波段二者都有贡献.因此在微波波段, 近场显微像能提供更多的信息.通常复介电常数可 表示为

$$\varepsilon = \varepsilon' + i\varepsilon''$$
, (3)

其中实部 ε' 为介电常数 ,虚部 ε "为介电损耗. 系统 的共振频率为 f_0 , 有 $\Delta f_0/f_0 = g\Delta \varepsilon'$,其中常数 g = -7×10⁻⁵(给定实验系统的测量值),故共振频率像反 映了介电常数的变化,因而能反映晶体中的掺杂浓 度和内应力,参阅图3(a)的左图.系统的品质因子 为(1/Q),有 Δ (1/Q)= $g'\Delta\varepsilon''$,其中g'=~7.1× 10⁻² 品质因子像反映了介电损耗(微波吸收)的空 间变化 与微波作用下的离子位移和畴界振动有关 , 显然 畴界处介电损耗最大 参阅图 3(a)的右图.图 3(b)对比了 LN 超晶格的同一区域的两种像,上图 为介电常数像,下图为介电损耗像.可以看出,在该 区域的右上部,介电常数像(上图)与介电损耗像 (下图)中的周期结构遭到破坏,在介电损耗像(下 图)中出现绿色区(其介电损耗最大),这对应于岛 屿畴分布区. 岛屿畴区内畴界密度较大 因而介电损 耗亦大. 岛屿畴区的出现是晶体生长过程中界面失 稳所致. 微波近场显微术不仅能表征超晶格中的周 期畴结构 还能提供超晶格中的溶质分布、内应力分 布、双折射的均匀性以及微波吸收分布的有关信 息^[43]

图 3 介电常数与介电损耗的微波近场显微成像 (a) 左为介 电常数像 右为介电损耗像 (b) 同一区域的两种像 其中上部为 介电常数像 ,下部为介电损耗像^[43]

介电材料通常都是绝缘体,用电镜观察时,入 射电子束在绝缘体表面形成电荷积累,使电子像逐 渐模糊.通常必须在表面蒸镀导电膜,以防止电荷积 累.近年来,环境扫描电镜的发展,有可能直接观察 绝缘样品而不需表面导电膜.这是由于环境扫描电 镜腔内的气压较通常扫描电镜内高一万倍,利用入 射电子束与中性分子碰撞产生的自由离子,在样品 表面邻近形成的通道,来消除表面电荷积累.另一方 面,二次电子成像技术的发展,能使不作任何处理 (如浸蚀)的表面直接成像.我们在环境扫描电镜 中 ,在未作处理的 LT 超晶格表面 ,实现了周期铁电 畴的二次电子成像 ,而且图像稳定 ,与传统方法获得 的像相符^[44].

3 介电体超晶格的光学效应

介电体以介电极化为特征 ,介电极化来源于电 子极化和离子(位移)极化. 在光频波段离子的位移 跟不上光波的变化,因此只有电子极化作出贡献.这 里考虑二阶非线性极化. 当共线的频率为 ω_1 和 ω_2 的光作用于非线性介质时 ,引起的二阶非线性极化 强度含有 $2\omega_1$, $2\omega_2$, $\omega_1 \pm \omega_2$ 等不同频率分量, 相应 的极化分量将辐射上述频率分量的光波. 但要获得 这些频率分量的有效输出,其相应的光参量过程必 须满足能量守恒和动量守恒,以和频为例,为了使能 量有效地从频率为 ω_1 和 ω_2 的基波光转换到频率为 ω_3 的和频光,必须满足的能量守恒为 $\omega_3 = \omega_1 + \omega_2$ 和动量守恒为 $k_3 = k_1 + k_2$,或 $k_3 - (k_1 + k_2) = 0$. 其 中 $\mathbf{k}_i = \frac{\mathbf{n}(\omega_i)}{c} \omega_i \kappa$ (*i*=1 2 3) \mathbf{k}_i 是频率为 ω_i 的光 的波矢 κ 是 k; 的单位矢量 ,三波矢是共线的. 这里 动量守恒用波矢量守恒表达 ,通常称为位相匹配. 若 $\omega_1 = \omega_2 = \omega$,即 $k_{\omega_1} = k_{\omega_2} = k_{\omega}$,由能量守恒,有 $\omega_3 =$ 2ω ,由波矢量守恒,即 $k_{2\omega}$ - $2k_{\omega}$ = 0,有 $n(2\omega)$ = n(ω),此为倍频情况.可以看出,位相匹配要求基波 光与倍频光的折射率相等 ,亦即要求在介质中基波 光与倍频光的相速度相等. 然而由于折射率色散效 $\omega_n(2\omega) \neq n(\omega)$,必然产生位相失配.利用晶体的 双折射效应 在特定的方向上可以实现基波光和倍 频光的相速度相等 从而得到高效输出. 这就是光学 工程中通常使用的位相匹配技术.

3.1 准位相匹配

1962 年, Bloembergen 提出的准位相匹配理 论^[45]指出,在任何光参量过程中,由于折射率色散 所引起的波矢量失配(位相失配),可用超晶格提供 的倒格矢来补偿.例如,倍频过程,其折射率色散引 起波矢量失配为 $\Delta k = k_{2\omega} - 2k_{\omega} = \frac{2\omega}{c} n(2\omega) - n(\omega)$]k,设计周期超晶格,使其初基倒格矢 $G_1 = \Delta k = \frac{2\omega}{c} n(2\omega) - n(\omega)$]k,故有 $k_{2\omega} - 2k_{\omega} - G_1 = 0.$ (4)

(4) 式被满足,即准位相匹配的条件被满足.此时,

周期超晶格的所有构造单元产生的倍频光都满足相 长干涉,其振幅相互叠加,而其强度比例于叠加振幅 的平方.若周期超晶格的构造单元数(周期数)为 N构造单元产生的倍频光强为 I_0 ,则超晶格的倍频 输出为 $I_{2\omega} = I_0 N^2$.我们曾用实验定量地验证了上述 结果的正确性^[46,47].对给定的光参量过程,设计超 晶格,使其倒格矢与失配矢量的矢量和为零,这样就 能使准位相匹配条件被满足.这不仅对诸波矢共线 的光参量过程是如此,对诸波矢非共线的光参量过 程也是如此^[23].

3.2 多重准位相匹配

我们仍考虑二阶非线性极化. 如上所述 ,当二共 线的频率为 ω_1 和 ω_2 的光作用于非线性介质,引起 的二阶非线性极化强度含有 $2\omega_1, 2\omega_2, \omega_1 \pm \omega_2$ 频率 分量. 如考虑一次级联效应,还存在 $3\omega_1 3\omega_2 2\omega_2 \pm$ $\omega_1 2\omega_1 \pm \omega_2$ 的频率分量.相应的极化分量将辐射上 述频率的光波. 这些频率分量是通过级联光参量过 程产生的. 要获得上述频率分量的有效输出 级联的 诸参量过程的动量守恒必须同时满足,这对传统的 位相匹配技术是不可能的 ,即使对上述准位相匹配 技术也是不可能的. 我们干 1990 年将周期超晶格拓 展为准周期超晶格,建立了多重准位相匹配理 论[15].结果表明,准周期超晶格可提供多个倒格矢, 分别参与相互级联的,或相互独立的多个光参量过 程 能同时实现多个光参量过程的准位相匹配 获得 多波长激光同时输出. 如果 $\omega_1 = \omega_2 = \omega_2$,上述一次级 联效应产生的六种频率分量退化为一种,即三倍频 3ω . 三倍频是通过抽运光 ω 的倍频产生 2ω 接着再 与基波光ω和频产生 3ω. 这就是说,三倍频是通过 倍频与和频的级联过程产生的,参阅图4(a). 要获 得高效三倍频输出,必须同时满足倍频、和频的准位 相匹配条件. 设计准周期超晶格 使之具有两个特定 的倒格矢 G₁₁和 G₂₃,分别等于倍频与和频过程的失 配矢量 于是有

$$\boldsymbol{k}_{2\omega} - 2\boldsymbol{k}_{\omega} - \boldsymbol{G}_{11} = 0 \quad , \qquad (5)$$

$$\boldsymbol{k}_{3\omega} - (\boldsymbol{k}_{\omega} + \boldsymbol{k}_{2\omega}) - \boldsymbol{G}_{23} = 0. \quad (6)$$

(5)式和(6)式分别是倍频与和频过程的准位相匹 配条件.在准周期超晶格中(5)式、(6)式同时被满 足,级联过程得以实现,可直接得到高效三倍频输 出.

我们于 1997 年实现了上述级联过程^{17]},直接 得到了三倍频,转换效率为 23%,同时还获得了倍

图 4 多重准位相匹配理论及实验^[17,18] (a)多重准位相匹配 示意图 (b) 三倍频实验

频输出 ,转换效率为 20% ,参阅图 4(b). 在此基础 上,通过基波($\lambda = 1342$ nm)的倍频得到红光,三倍频 得到蓝光,实现了红 – 蓝双波长激光输出^[48]. 进一 步研制成红 – 蓝双波长全固态激光器原型,其红光 输出为 1W、蓝光输出为 140mW. 全固态激光技术的 发展,在激光晶体 Nd :YVO₄ 中实现了波长 1342nm 和 1064nm 的同时振荡. 通过它们的倍频、和频、三 倍频等就能得到多波长同时输出. 我们通过 1342nm 基波光的倍频得到红光、通过 1342nm 和 1064nm 的 和频得到黄光、通过 1064nm 的倍频得到绿光,实现 了红 – 黄 – 绿三波长的同时输出^[49]. 我们还实现了 红 – 黄 – 绿 – 蓝四波长的同时输出^[50].

3.3 三基色与白光激光器

在上述工作基础上 我们采用了两种方案 实现 了红、绿、蓝三基色同时输出 ,并研制成全固态准白 光激光器原型. 第一方案[19-21] 是,用半导体抽运的 掺 Nd³⁺ 激光晶体双波长激光器作为基波光源,通过 对其 1342nm 输出的倍频得到红光 ,对其 1064nm 输 出的倍频得到绿光,对其1342nm 输出的三倍频得 到蓝光 ,见图 5(a). 通过三基色的能量分配得到了 准白光,其功率大于1W,并进一步研制成全固态三 基色准白光激光器原型,参阅图 5(b)和(c).第二 方案^[22]是,以 λ_n = 532nm 的绿光为抽运光,通过 OPO 产生 $\lambda_s = 633$ nm 的信号光(红光)和 $\lambda_i =$ 3342nm 的闭置光,再由抽运光与闭置光和频产生 $\lambda_{n+1} = 459$ nm 的蓝光,其转换效率大于 30%. 该方案 的理论转换效率可达 100%. 有望获得高功率白光. 第二方案涉及频率下转换 ,可能赋于白光全新的纠 缠态的特性.

上面讨论的是一次级联效应和频率上转换. 在 激光与非线性介质交互作用时,高次级联效应同样

图 5 超晶格三基色全固态激光器 (a)三基色激光器示意图; (b)实验观测结果(c)三基色全固态激光器实物图

存在,通过上述理论与技术,可以得到高阶谐波的有效输出,如四倍频等.频率下转换同样要求能量守恒和动量守恒,多重准位相匹配理论与技术同样有效, 这就为研制量子通信的光源提供了新途径.

3.4 二维周期超晶格

我们研究了两种二维周期超晶格. 其一为铁电 畴反转构成 具有二维六方对称性 在其中实现了非 共线准位相匹配,获得了弹性散射和非弹性散射 (拉曼散射)的准位相匹配的增强^[23,24].其二是折射 率二维周期调制的 具有二维正方对称性 在其中发 现新的光学双稳机制,并实现了多束光同时进入双 稳态[51-56].铁电畴反转构成的二维超晶格,其点阵 参数为 a = 9.05μm, 初基倒格矢为垂直于密排方向 的 G_{01} 的六个等效矢量 其大小为 $4\pi/\sqrt{3}a$ 参阅图 2 (d). 若入射波矢 k_x 沿 LT 晶体的 x 轴,当入射波长 为 1064nm 时,在屏幕上出现的是其倍频光的圆环, 环的中心是 k_ 在屏幕上的投影点 ,见图 6(a). 当入 射波长为 933nm,在屏幕上为倍频光的具有镜面对 称的双环,如图 6(c)所示. 若入射波矢 k 沿 LT 晶 体的 γ 轴 随着入射光频率的变化 在投影屏上出现 的倍频图样如图 6(d),(e),(f)所示. 详细分析表 明 这是来自基波光的弹性散射导致的非共线准位 相匹配倍频增强效应. 在非线性介质中, 入射光与散 射光的和频 $\omega + \omega'$ 是普遍存在的. 在通常情况下,该 参量过程无法满足波矢量守恒,其效应过于微弱.弹 性散射满足能量守恒 故入射光与散射光频率相等, $\omega = \omega'$,弹性散射波矢与入射光波矢大小相等,有 $|k_{a}| = |k_{a}'|$. 但入射光波矢的方向是给定的, 而弹性散射波矢沿所有可能的方向.其中只有那些

满足准位相匹配条件的散射波矢,才能与入射光和 频得到增强.其准位相匹配条件是,诸非共线矢量 k_a, k_a, k_{a+a},与倒格矢G_m的矢量和为零,即

 $\boldsymbol{k}_{\omega+\omega'} - (\boldsymbol{k}_{\omega} + \boldsymbol{k}_{\omega'}) - \boldsymbol{G}_{mn} = 0.$ (7)如果入射波矢平行于 LT 晶体的 x 轴 ,入射波长为 1064 nm ,初基倒格矢 Gu 参与准位相匹配 ,其准位 相匹配条件为 $k_{2a} - (k_a + k_{a'}) - G_{01} = 0$ 满足上述 条件的诸波矢 k_{20} 的集合 构成了半顶角为 θ 的圆锥 面,见图6(b).因而在屏幕上的投影为一圆,见图6 (a). 如果入射波矢平行于 LT 晶体的 x 轴 ,入射光 的波长为933nm,一对镜面对称的非初基倒格矢 G_{11} 参与准位相匹配,在屏幕上的投影是一对具有镜面 对称的双环 ,参阅图 6(c). 值得注意的是 ,初基倒格 矢 G_{10} 和非初基倒格矢 G_{11} 及其相应的等效倒格矢, 基倒格矢 ,见图 2(d). 如果入射波矢平行于 LT 晶体 的 γ 轴,一对初基倒格矢 G_{10} 参与准位相匹配,或一 对初基倒格矢 G₁₀和一对非初基倒格矢 G₁₁同时参 与准位相匹配,其倍频光在屏幕上的投影如图6 (d)(e)(f)所示^[23].关于非弹性散射,我们仔细 研究了拉曼散射,证实了同样存在准位相匹配增强 效应,并通过实验将散射强度提高了10⁴—10⁵ 倍^[24]. 这就为设计新型拉曼激光器和发展高分辨拉 曼谱学提供了新途径.

研究的第二类是折射率被调制的二维周期超 晶格,具有二维正方对称性.设计超晶格时调节其点 阵面间距,对给定的入射光,使相互正交的两组点阵 面都满足 Bragg 条件.因此二维超晶格内有4个Floquet – Bloch 波被激发.于是我们发展了四波动力学 理论^[5].进一步考虑了 Kerr 型介电非线性,发现了 一种新的光学双稳机制,称之为折射率调制机制,观 测到四束出射光同时达到光学双稳态^[51,52],并对非 Bragg 条件下普适的多波动力学行为进行了系统的 研究^[53-56].

4 介电体超晶格的声学效应

前面己经说明,在以一对正、负畴为构造单元所 构成的超晶格中,相邻铁电畴的压电常数变号,即畴 界处压电常数不连续.我们知道,压电应力是压电常 数与电场强度的乘积.在恒稳电场中,畴界两侧的 正、负畴内的压电应力不等(符号相反),故畴界处 产生内应力.在交变电场中,畴界处产生交变内应 力.交变内应力则产生交变应变,并以弹性波的形式

图 6 LT 晶体二维铁电畴超晶格中的弹性散射和拉曼散射的准 位相匹配增强效应 (a)--(f)是弹性散射的增强效应,其中 (a)--(c)是入射光平行于 LT 晶体的 *x* 轴 (d)--(f)是入射光 平行于 LT 晶体的 *y* 轴 (g)为拉曼散射增强效应^[23,24]

在超晶格中传播,故超晶格中的畴界都可看为 δ 声 源. 在考虑超声激发与传播时,超晶格本身可以看为 周期排列的一列 δ 声源,这类超晶格我们称为声学 超晶格(acoustic superlattice). 设计声学超晶格时, 适当选择相邻 δ 声源的间距,使所有 δ 声源产生的 超声波相长干涉,即相干叠加^[25,57,58]. 满足相长干涉 的诸 δ 声源,产生的超声波的振幅相互叠加,而其强 度比例于总振幅的平方. 若构造单元中 δ 声源所激 发的超声强度为 I_a ,超晶格周期数为N,该超晶格产 生的超声波强度为 $I_a = I_0 N^2$. 通常超声工程中超声 换能器都是用均质晶片制成的,可以看出,用声学超 晶格研制的换能器明显地提高了超声强度和转换效 率. 通过求解声学超晶格的弹性波波动方程,可得声 学超晶格的电抗,从而得到谐振器、换能器的谐振频 率^[25,59,60]为

 $f_m = mv/\Lambda$ (m = 1 2 3...), (8)

其中v是固体中声速 Λ 是超晶格周期,参阅图 1(a). 值得注意的是,谐振频率只决定于超晶格周 期 / ,而与晶片的总厚度无关. 如我们所知 ,如果用 通常均质材料来制备工作频率为几百兆周到几千兆 周的体波超声器件,其晶片总厚度要减薄到几十微 米到几微米 对当前超声工程中的工艺系统是有困 难的,然而制备周期为数微米的声学超晶格是很方 便的. 另一方面,通过求解声学超晶格的弹性波波动 方程 所得换能器的电抗是超晶格周期数 N 和电极 面积 A 的函数^[25,60].用通常均质材料制备换能器, 电抗只是电极面积 A 的函数. 我们知道,在高频下 静态电容是电抗的主要部分 因而换能器的插入损 耗很高.但若使用超晶格,适当地选用 N 和 A,可使 电抗的实部等于甚至大于虚部. 这样 换能器的插入 损耗在 50Ω 的测量系统中可接近于零^[00]. 我们利 用声学超晶格的上述优点,研制成或提供了超声换 能器^[00 61]、谐振器^[59 62 63]、声光偏转器^[41]、集成声 开关[65]的原型器件和设计原理,填补了当前超声工 程中体波声学器件从几百兆周到儿千兆周的空白频 段.

5 超晶格振动与微波耦合以及极化激 元激发

在 LN LT 这类晶体中,铁电畴自发极化矢量只 能平行或反平行于z轴,因而超晶格中存在两类典 型畴界:一类是平行于z轴的畴界,如图1所示,在 畴界上不存在束缚电荷;另一类是垂直 z 轴的畴界, 如图 7(a)所示,畴界上存在束缚电荷,且其面密度 最大.我们先讨论第二种情况,如图7(a)所示,畴界 上存有束缚电荷,且相邻畴界束缚电荷的符号相反. 这样 畴界既可看为电荷中心 ,又可看为质量中心 , 于是,近似地将这类超晶格看为一维正、负离子链, 如图T(a)所示. 若 γ 偏振的电磁波沿z轴通过超晶 格,将引起畴界(束缚电荷)沿 y 方向振动,这就是 说,电磁波激发了超晶格振动.反之,畴界(束缚电 荷)沿 γ 方向振动 将激发沿 z 轴传播沿 γ 偏振的电 磁波.这表明超晶格振动与电磁波耦合,并导致极化 激元的产生. 这十分类似于 1951 年黄昆先生提出的 离子晶体中电磁波与晶格振动的格波互相耦合形成

的极化激元^[66],因而我们将这类超晶格称为离子型 声子晶体.我们研究了离子型声子晶体中相邻畴界 的运动规律,发现它满足的运动方程与反映离子晶 体中正负离子相对运动的黄昆方程在形式上完全一 样^[8]. 所得的色散曲线和介电函数曲线完全类似, 参阅图 7(b)(图中ω。为介电函数的零点频率ω_L 为超晶格中纵声波的谐振频率,V_c为尚未与超晶格 振动耦合的微波波速),还得到了完全类似的联系

图 7 微波与超晶格振动耦合 (a)离子型声子晶体示意图 (b)极化激元的色散与介电异常 (c)极化激元激发引起的微 波吸收^[8-10]

纵、横光学波频率的 Lyddane – Sachs – Teller 关系 式^[8]. 只不过在离子晶体中上述长波光学性质是发 生在红外波段,这里发生在微波波段. 同时,我们在 实验上发现了由于极化激元激发而引起的强烈的微 波吸收(见图7(c)),也就是说发现了微波吸收的 新机制.

进一步研究发现,畴界上是否存在束缚电荷,并 非产生超晶格振动与微波耦合的根本原因,其根本 原因在于压电效应,在于超晶格中压电系数的周期 跃变^[9,10].我们考虑如图1(a)所示的超晶格,可以 看到,超晶格中畴界上不存在束缚电荷.在前面讨论 超晶格的声学效应时,己经说明,超晶格中畴界处压 电系数变号,因而可将畴界看为δ声源,故在微波的 交变电场中必然产生超晶格振动.另一方面,在超晶 格振动时,由于正、负畴中应变的符号相反,通过压 电效应产生的感生极化矢量在正负畴中方向相同, 在同一瞬间超晶格中所有畴的感生极化矢量方向相同, 而引起微波激发.这就是说,由于压电效应产生了微 波与超晶格振动的耦合.基于超晶格的压电效应可

以得出,不仅畴界的横振动可与微波耦合 畴界的纵 振动也可与微波耦合导致极化激元激发. 这是由于 畴界的纵振动通过压电效应产生横向感生极化矢量 振动的原故^[967],在实验上测量了纵振动与微波耦 合产生的极化激元带隙的中心频率与带宽,其结果 与理论估计相符^[67]. 我们还发现了两种不同偏振态 的微波耦合而产生两类极化激元的新效应. 参阅图 1(a) 若 γ 偏振的微波在超晶格中沿 x 方向播 ,通过 压电效应 激发畴界沿 x 方向振动 从而产生沿 x 方 向传播的纵超声波. 沿 x 方向传播的纵超声波通过 压电效应不仅产生 γ 偏振沿 x 方向传播的微波 ,还 同时产生z偏振沿x方向传播的微波.y偏振和z偏 振的电磁波的耦合 引起了介电椭球主轴的旋转.在 这种情况下 出现了两类极化激元 ,一种不能通过带 隙称寻常极化激元(ordinary polariton),另一种能 通过带隙,称异常极化激元(extraordinary polariton)^{10]}. 这一有趣的发现,对进一步通过极化激元 能带设计与裁剪 实现极化激元调控 以及研制新型 的微波器件,可能具有十分重要的意义.

6 结束语

二十多年的理论与实验研究表明,介电体超晶 格己经成为一种具有重要应用前景的人工有序微结 构材料.在我们对铁电畴超晶格研究的基础上,准位 相匹配材料己经成为国际热门领域,以及在光电子 学、声电子学、材料科学的交叉领域中催生了称之为 "畴工程学"的新生学科^[68—70].实践表明,已能将多 个光参量过程、平行光束的汇聚过程(透镜功能)和 偏转过程(棱镜功能)集成于一块有序畴结构材料 之中.相信随着工作的持续深入,在粒子(如光子)、 准粒子(如声子、极化激元、表面等离激元等)能带 设计、裁剪方面,在实现上述粒子、准粒子调控方面, 在级联物理过程全固态集成方面,必将对未来光电 子技术、声电子技术、微波技术的发展作出贡献.

参考文献

- [1]黄昆.物理,1993,22:257[Huang K. Wuli(Physics), 1993,22:257(in Chinese)]
- [2] 冯端. 物理, 1989, 18:1[Feng D. Wuli(Physics), 1989, 18: 1(in Chinese)]
- [3] Ming N B. Facets , 2003 , 2 (2) 6
- [4] Yablonovitch E , Gmitter T J. Phys. Rev. Letter. , 1989 , 63 1950
- [5] Feng J , Ming N B. Phys. Rev. A , 1989 40 7047
- [6] Wang Z L, Zhu Y Y, Yang Z J et al. Phys. Rev. B, 1996, 53 6984
- [7] Economou E N , Sigalas M. J. Acous. Soc. Am. , 1994 , 95 1734
- [8] Lu Y Q , Zhu Y Y , Chen Y F *et al*. Science ,1999 284 1822
- [9] Zhu Y Y , Zhang X J , Lu Y Q et al. Phys. Rev. Lett. 2003 , 90 053903
- [10] Huang C P , Zhu Y Y. Phys. Rev. Lett. 2005 94 :117401
- [11] 闵乃本. 自然科学进展 1994 4 543[Ming N B. Progress in Natural Science , 1994 , 4 543(in Chinese)]
- [12] Zhu Y Y, Ming N B. Opt. Quant. Electron. ,1999 31 :1093
- [13] Ming N B. Adv. Mater. , 1999 , 11 :1079
- [14] Shechtman D , Blech I , Gratias D et al. Phys. Rev. Lett. , 1984 ,53 1951
- [15] Feng J , Zhu Y Y , Ming N B. Phys. Rev. B ,1990 ,41 5578
- [16] Zhu S N , Zhu Y Y , Zhang Z Y et al. J. Appl. Phys. 1995 , 77 5481
- [17] Zhu S N , Zhu Y Y , Ming N B. Science ,1997 278 843
- [18] Zhu Y Y , Xiao R F , Fu J S et al. Appl. Phys. Lett. , 1998 , 73 #32
- [19] He J L , Liao J , Liu H et al. Appl. Phys. Lett. , 2003 , 83 228
- $\left[\begin{array}{c} 20 \end{array} \right] \ Liao J , He J L , Liu H <math display="inline">et \ al.$ Appl. Phys. Lett. ,2003 ,82 3159
- [21] Li H X, Fan Y X, Xu P et al. J. Appl. Phys. ,2004, 96 7756
- [22] Gao Z D , Zhu S N , Tu S Y et al. Appl. Phys. Letter. ,2006 , 89 181101
- [23] Xu P , Ji S H , Zhu S N *et al.* Phys. Rev. Lett. , 2004 , 93 : 133904
- [24] Xu P , Zhu S N ,Yu X Q et al. Phys. Rev. B , 2005 , 72 : 064307
- [25] Zhu Y Y , Ming N B. J. Appl. Phys. 1992 , 72 904
- $\left[\begin{array}{c} 26 \end{array} \right] \,$ Zhu Y Y , Ming N B Jiang W H. Phys. Rev. B 1989 40 8536
- [27] Zhu Y Y, Ming N B. Phys. Rev. B 1990 42 3676
- [28] Zhu S N , Zhu Y Y , Qin Y Q et al. Phys. Rev. Lett. ,1997 , 78 2752

- $\left[\begin{array}{c} 29 \end{array} \right] \,$ Zhu Y Y , Xiao R F , Fu J S. Optics Letters , 1997 , 22 :1382
- [30] Zhu Y Y , Ming N B. J. Phys Condens Matter ,1992 4 8073
- [31] Zhang X J , Lu Y Q , Zhu Y Y et al. Appl. Phys. Lett. , 2004 85 3531
- [32] Liu X J , Wang Z L , Jiang X S et al. J. Phys. D : Appl. Phys. ,1998 31 2502
- [33] Liu X J , Wang Z L , Wu J et al. Chin. Phys. Lett. , 1998 15 426
- [34] Liu X J , Wang Z L , Wu J et al. Phys. Rev. B , 1998 58 12782
- [35] Chen Y B , Zhu Y Y , Qin Y Q et al. J. Phys. Condens Matter 2000 ,12 529
- [36] Chen Y B , Zhang C , Zhu Y Y et al. Appl. Phys. Lett. , 2001 78 577
- [37] Liu Z W , Du Y , Liao J et al. J. Opt. Soc. Am. B 2002 ,19 : 1676
- [38] Liu H , Zhu Y Y , Zhu S N et al. Appl. Phys. Lett. 2001 79 728
- [39] Liu H , Zhu S N , Zhu Y Y *et al*. Appl. Phys. Lett. 2002 81 : 3326
- [40] 闵乃本. 晶体生长的物理基础. 上海:上海科技出版社, 1982. 第四章[Ming N B. The Fundamentals of Crystal Growth Physics, Shanghai : Shanghai Scientific and Technical Publishers, 1982. Chapter 4(in Chinese)]
- [41] Ming N B , Hong J F , Feng D. J. Mater. Sci. , 1982 , 17 1663
- [42] Lu Y L , Lu Y Q , Chen X F et al. Appl. Phys. Lett. ,1996 , 68 2642
- $\left[\begin{array}{c} 43 \end{array} \right] \ \ Lu \ Y \ L$, Wei T , Duewer F $et \ al.$ Science , 276 , 1997 2004
- [44] Zhu S N , Cao W W. Phys. Rev. Lett. , 1997 , 79 2558
- [45] Armstrong J A , Bloembergen N , Ducuing J et al. Phys. Rev. , 1962 , 127 :1918
- [46] Feng D, Ming B B, Hong J F et al. Appl. Phys. Lett. ,1980 , 37 607
- [47] 薛英华, 闵乃本, 朱劲松等. 物理学报, 1983, 32:1515 [Xue Y H, Ming N B, Zhu J S *et al*. Acta Physica Sinica, 1983, 32:1515(in Chinese)]
- $\left[\mbox{ 48 } \right] \ \mbox{Luo G Z}$, Zhu S N , He J L $et\ al.$ Appl. Phys. Lett. , 2001 , 78 3006
- [49] He J L , Liao J , Liu H et al. Appl. Phys. Lett. , 2003 , 83 228
- [50] Liao J, He J L, Liu H et al. Appl. Phys. B, 2004, 78 265
- [51] Xu B, Ming N B. Phys. Rev. Lett. , 1993 71 1003
- [52] Xu B , Ming N B. Phys. Rev. Lett. , 1993 71 3959
- [53] Wang Z L , Wu J , Liu X J et al. Phys. Rev. B , 1997 ,56 : 9185
- [54] Chen X F , Lu Y L , Wang Z L. Appl. Phys. Lett. , 1995 , 67 3538
- [55] Wang Z L , Zhu Y Y , Xu N *et al.* J. Appl. Phys. ,1996 ,80 : 25
- [56] Wang Z L , Yang Z J , Zhu Y Y et al. Optics Commun. ,1996 , 123 649
- [57] Zhu Y Y, Zhu S N, Qin Y Q et al. J. Appl. Phys. ,1996 , 79 2221
- [58] Zhu Y Y , Zhu S N , Ming N B. J. Phys. D : Appl. Phys. 1996 , 29 185
- [59] Zhu Y Y, Ming N B, Jiang W H et al. Appl. Phys. Lett., 1988, 53 2278
- [60] Zhu Y Y , Ming N B , Jiang W H et al. Appl. Phys. Lett. , 1988 , 53 1381
- [61] Cheng S D , Zhu Y Y , Lu Y L et al. Appl. Phys. Lett. , 1995 , 66 291
- [62] Chen Y F , Zhu Y Y , Zhu S N et al. Appl. Phys. Lett. , 1997 , 70 592
- [63] Xu H P , Jiang G Z , Mao L et al. J. Appl. Phys. ,1992 ,71 : 2450
- $\left[\begin{array}{c} 64 \end{array} \right] \ \ Zhu \ Y \ Y \ , Cheng \ S \ D \ , Ming \ N \ B. \ Ferroelectrics \ , 1995 \ , 173 \ 207 \ \end{array}$
- [65] Zhang X J , Zhu Y Y , Chen Y F et al. J. Phys. D :Appl. Phys. , 2002 , 35 :1414
- [66] Huang K. Proc. R. Soc. London A ,1951 ,208 352

- [67] Zhang X J , Zhu R Q , Zhao J et al. Phys. Rev. B ,2004 ,69 : 085118
- [68] Rosenman G , Skliar A , Arie A. Ferroelectrics Review , 1999 , 1 263
- [69] Fousek J, Litvin D B, Cross L E. J. Phys Condens Mattert, 2001, 13 1.33
- [70] Kutuzov A V G , Kutuzov V A G , Kalimullin. Physics-Uspekhi , 2000 , 42 647

· 书评和书讯 ·

探索高等科教书店物理类书目推荐(IX)

作者	书名	定价	作者	书名	定价
J. A. Peacock	宇宙物理学(影印)	196.0	L – A McFadden	太阳系百科全书(第二版)(影印)	188.0
Sean M. Carroll	时空与几何(影印)	69.0	冯克嘉	中国业余天文学家手册	16.9
黄润乾	恒星物理	68.0	J. E. Marsden	力学和对称性导论(英文影印版)	72.0
曾琴	天体物理中的微波谱线诊断	48.0	J. E. Marsden	力学和对称性导论——经典力学系统初探	58.0
李东明	天体测量方法——历史. 现状和未来	60.0	K. Christensen	复杂性和临界状态(影印)	45.0
褚桂柏	月球探测器技术	106.0	沈惠川	经典力学	45.0
胡中为	普通天文学	68.0	J. V. José	经典动力学现代方法(影印)	126.0
S. W. Hawking	时空的大尺度结构 (中文/影印)	48.0	V. LARNOLD	经典力学和天体力学中的数学论题(影印)	51.0
哥白尼	天体运行论	39.0	В. и. 阿诺尔德	经典力学的数学方法(第4版) · 齐民友译	54.0
Don Lincoln	理解宇宙 – 从夸克到宇宙学 (影印)	50.0	V. I. Arnold	经典力学的数学方法 第2版(影印)	87.0
J. Tennyson	天体光谱学(影印)	22.0	李德明	经典力学	22.3
俞允强	广义相对论引论(第2版)	11.5	H. Goldstein	经典力学 第3版(影印)	60.0
[美]H.C.瓦尼安	引力与时空(原书第二版)	60.0	W. Greiner	经典电动力学(影印)	89.0
James Binney	星系天文学	60.0	张建树	理论力学	42.0
胡中为	普通天文学	68.0	海欣	理论力学考研辅导	32.0
张和祺	空间天文学	23.0	A. ∏. 马尔契夫	理论力学 第3版 ·李俊峰 译	54.0
詹姆斯·宾尼	星系动力学	72.0	李银山	Maple 理论力学	29.5
余明	简明天文学教程(第二版)(含盘)	37.0	周衍柏	理论力学教程 第2版	15.2
C 弗拉马里翁	大众天文学(上下册) · 李珩 译	99.0	钟家骐	理论力学常见题型解析及模拟题	35.0
N. K. Glendenning	大爆炸后的宇宙之旅(影印)	65.0	汪晓仑	理论力学一题多解范例	49.0

我店以经营科技专著为特色 以为科技工作者和大专院校师生提供优质服务为宗旨 欢迎广大读者来店指导或来电查询.

网址 http://www.explorerbook.com

电话 010 - 82872662、62556876、89162848 电子邮箱 :explorerbook@vip.163.com 邮政编码 :100080

通讯地址 北京市海淀区海淀大街 31 号 313 北京探索高等科教书店 联系人 徐亮、秦运良

·物理新闻和动态 ·

反物质 – 物质分子的制造

美国加州大学河边分校科学家 David Cassidy 和 Allen Mills 找到了物质和反物质结合的确凿证据 他们发现两个正电子素 原子(或称电子偶素 positronium 简写为 Ps)可以相互结合 形成正电子素分子(molecular positronium 简写为 Ps₂).

科学家们如何观察短寿命的 Ps₂ 分子呢?首先 ,Cassidy 和 Mills 采用²² NaCl 作为放射源产生正电子 尽管短寿命的正电子 将和电子结合而迅速湮没产生 γ 射线 ,但实验中他们使用 Surko 等发展的捕获技术 ,可将正电子约束和储存在"磁阱"中 ,大大 延长它们的寿命 ,并很快积累数百万个正电子. 然后从磁阱中提取正电子 ,产生高强的正电子脉冲束 ,并在十亿分之一秒的时 间内打在纳米多孔二氧化硅薄靶表面上 ,正电子将结合电子自发形成高密度的不稳定 Ps 原子 ,新形成的原子迅速占据在硅靶 孔洞内并相互碰撞 ,产生 γ 射线. 他们发现相互碰撞正电子素原子的聚集 ,如果孔洞内正电子素原子密度足够高 ,相互之间更 加接近 ,它们湮没之前将相互结合 ,在孔洞内表面形成 Ps₂ 分子. 此外 ,在温度较低时 ,Ps 原子结合成分子的几率更大 ,因为低 温让分子更加稳定 ,而随之释放出的 γ 射线也更加强烈. 下一步他们计划采用更强的正电子源 ,可能形成由 Ps₂ 分子构成的一 个玻色 – 爱因斯坦凝聚态 ,这将有助于核聚变电力和定向能武器的研究 ,如湮没 γ 激光等的研发 ,而且还有助于解开长期存 在的宇宙之谜.

(吴奕初 摘自 Nature 2007, 499: 195 及相关新闻报道)