Zigzag 边纳米石墨带超导结中的可控 $0 - \pi$ 相变^{*}

梁奇锋¹² 余 勇¹ 王强华¹ 董锦明^{1,†}

(1 南京大学物理系 固体微结构国家实验室 计算凝聚态物理组 南京 210093)(2 绍兴文理学院物理系 绍兴 312000)

摘 要 文章作者利用实空间格林函数方法研究了超导体 – zigzag 边纳米石墨带 – 超导体(SGS)约瑟夫森结中的 超导输运行为.结果发现(1)通过一个外加横向电场可以使该超导结的超流方向发生翻转,即发生超导0-π相变; (2)通过改变纳米石墨带的长度或者其上的门电压,同样也可以使它发生0-π相变.由于可以用外电场方便地控制 该超导结0-π相变的发生,使得它有可能在未来的量子计算以及超导电子学中发挥巨大的作用. 关键词 纳米材料,超导电性,约瑟夫森效应 0-π相变

Controllable $0-\pi$ transition in a zigzag superconducting graphene – nanoribbon junction

LIANG Qi-Feng^{1 2} YU Yong¹ WANG Qiang-Hua² DONG Jin-Ming^{1,†}

(1 Group of Computational Condensed Matter Physics, National Laboratory of Solid
 State Microstructures Department of Physics, Nanjing University, Nanjing 210093, China)
 (2 Deartment of Physics, ShaoXing University, ShaoXing 312000, China)

Abstract The supercurrent in a Josephson junction composed of a zigzag-edged graphene nanoribbon (ZGNR) lying between two superconducting leads [superconductor-graphene-superconductor (SGS) junction] has been studied by the Green's function method. It is found that applying a small transverse electric field can reverse the supercurrent direction, leading to a so – called $0 - \pi$ phase transition. This transition can also happen periodically with a given change in the ZGNR's length, and , more importantly, can be easily and electrically controllable by a gate voltage , which is not possible in conventional superconducting π junctions and makes the SGS junction very promising for future application in superconducting electronics, as well as in quantum information and computation.

Keywords nanometer materials, superconductivity, Josephson junction, $0-\pi$ phase transition

在一个普通的超导约瑟夫森结中,超流的大小 遵循约瑟夫森关系: $I_e = I_0 \sin \Delta \phi$.此处, I_0 是超导 临界电流, $\Delta \phi = \phi_L - \phi_R$ 是两边超导电极的相位 差.理论和实验研究都发现,在一些特殊条件下,超 导结的超流方向会发生翻转,这相当于在约瑟夫森 电流关系的正弦函数中加入了一个大小为 π 的相 位因子^[1].通常把具有这种特性的超导结称为超导 π 结(或 π 结).目前的理论和实验研究表明,利用 π 结可以构造一个基本的量子信息原件——量子比 特,预期在未来的量子计算和量子信息领域中^[2], 可以起到至关重要的作用.因此找到一种方便可控 的π结对于未来的信息技术来说有着十分重要的

^{*} 国家重点基础研究发展计划(批准号:2004CB619004, 2006CB921803)、国家自然科学基金(批准号:90503012, 10874067)资助项目 2008-11-12收到

[†] 通讯联系人. Email: jdong@ nju. edu. cn

意义.

目前实验上有几种方式可构造 π 结,其中,超 导体/铁磁层/超导体是最常见的一种方式. Ryazanov 等人^[3(a)]最早在实验上用这样的约瑟夫森结实 现了 0 – π 相变. 他们把一个 Cu_xNi_{1-x}铁磁层两边连 接上两个 Nb 超导电极,构成一个约瑟夫森结. 通过 改变试验温度,可以使得超导结从高温时的 0 态转 变到低温时的 π 态. Kontos 等人则发现随着中间铁 磁层厚度的改变,约瑟夫森结也会在 0 态和 π 态之 间转换^[3(b)]. 在这类 π 结中,铁磁层内部的交换场 对 0 – π 相变的发生起着十分关键的作用. 但是在 一般的铁磁材料中,交换场的大小是由组成材料的 元素种类和晶体结构决定的,一般是不容易改变的, 这就大大限制了它们在超导电子学和量子计算中的 可能应用.

最近几年 利用量子点制作的一些 π 结也在实 验室中成功地实现了. Cleuziou 等人利用碳纳米管 量子点就制备了这样的 π 结^[χ_{c})]. 近来,实验上合 成了宽度方向达到纳米尺度的石墨带. 最近 利用化 学或者通过 STM 针尖刻蚀单层石墨片的方法甚至 能把石墨带的宽度控制在 10nm 以下^[4].由于相同 的碳原子六边形排列的几何结构 纳米石墨带、碳纳 米管和单层石墨片[5]的电学性质有着很多的相似 性. 但是由于存在带边 .纳米石墨带还具有不同于其 他两种碳纳米材料的新的电学^[6]和磁学性质^[7]]. 例如 zigzag 边石墨带最靠近中性点附近的两条能 带,会在能量E = 0附近变得十分平坦.此时若引入 电子 – 电子相互作用,就会在E = 0附近打开一个 能隙 同时形成" 自旋极化态 "的基态. 如果在 zigzag 边石墨带的宽度方向加上一个横向电场 E_T 其原本 简并的自旋能带将会发生劈裂 劈裂的大小与外加 电场的强度成正比^[7 8].此时其能带结构就和铁磁 金属中的非常类似 唯一不同的是,可以通过外加电 场很容易地控制 zigzag 边纳米石墨带内部等效的 " 交换场 ".

利用 zigzag 边纳米石墨带的上述特性可以构造 一种新颖的超导 π 结(SGS-π 结);在此 π 结中 ,可 以利用外加电场来改变石墨带里的自旋能带的劈裂 大小 ,使它按照人们的意愿在 0 态和 π 态之间转 换. 随着纳米技术的进步 ,甚至有可能把大量的 SGS-π 结集成到一张单层石墨片上 ,从而为将来大 尺度的集成和操作量子比特提供了可能性.

图 1(a)给出了我们计算时所用的 SGS 超导结的结构示意图.其中 W 和 L 分别代表石墨带的宽度

和长度 ;a₀ 是石墨烯中的晶格常数.两个超导电极 用蓝色的矩形来表示.为使计算过程简单 ,两边电极 和中间正常导体部分都使用了相同的原子结构 ,但 是这样的简化处理不会影响结果的可靠性.同时 ,我 们不考虑界面散射的作用 ,因为理论研究表明它对 于石墨烯结构材料的作用并不显著.例如 ,对于它的 超导输运来说 ,一个有限的界面势垒最多只是使得 其超流 – 相位关系变得更接近于正弦函数.

图 1 (a) 左 8-zigzag 边纳米石墨带的几何结构,前缀 8 表示横向上共有 8 条碳原子链. 右:自旋极化态下的自旋密度分布. 深色和浅色分别代表自旋密度的正负 (b)横向电场导致的自旋劈裂 (c)自旋劈裂的细节. 其中虚线 浅色)和实线(深色)分别代表自旋向上和向下的电子能带,而 δ_q 代表库珀对获得的非零动量

考虑了 Hubbard 类型电子 – 电子互作用后,系统 π 电子的哈密顿量可以写成如下形式:

 $H = -t \sum_{\langle i,j \rangle \leq s} (\hat{c}_{is}^{+} \hat{c}_{js} + \text{h.c.}) + \sum_{i} [U(\hat{n}_{i,\uparrow} - 1/2)]$

 $(\hat{n}_{i,\downarrow} - 1/2) + V_{E}(i)(\hat{n}_{i,\uparrow} + n_{i,\downarrow})]$ (1) 式中, < i,j > 代表一对相邻的原子格点, t 代表 hopping 系数,取为 2.7eV. $c_{i,s}^{+}(c_{i,s})$ 是格点 i 上的电 子的产生(湮灭)算符. 下标 $s(s=\uparrow,\downarrow)$)代表电子自 旋指标. $\hat{n}_{i,s}$ 是格点 i 上的电子数算符. U 代表在同格 点上的电子互作用,取为 1.5t. $V_{E}(i)$ 代表一个横向 电场 E_{T} 的作用,从而在石墨带的横向方向形成一个 随着原子位置线性变化的在位势. 本文使用 Hatree – Fock 平均场近似来处理电子的相互作用. 经过平 均场处理,原来的电子相互作用哈密顿可以简化为 下面的单电子形式:

$$H = -t \sum_{\langle ij \rangle s} (\hat{c}_{is}^{\dagger}, \hat{c}_{js}^{\dagger} + \text{h.c.}) + \sum_{is} U(\langle \hat{n}_{is}, -1/2 \rangle \hat{n}_{is}) - \langle \hat{n}_{is}^{\dagger} \rangle \langle \hat{n}_{is} \rangle + 1/4) + \sum_{is} V_{E}(i) \hat{n}_{is}. \quad (2)$$

在这个单电子哈密顿里,电子 – 电子互作用变换成 了一个与电子自旋有关的电子在位势 $U < \hat{n}_{i,s} - 1/2 >$. 然后我们把这个势和 $V_{\mathcal{E}}(i)$ 相加,得到一个等效的 单电子在位能 $U_{i,s}^{\text{eff}} = U < \hat{n}_{i,-s} - 1/2 > + V_{\mathcal{E}}(i)$,而 方程(2)的单电子哈密顿就可以进一步改写为:

$$H = -t \sum_{\langle ij \rangle s} (\hat{c}_{is}^{+} \hat{c}_{js} + h.c.) + \sum_{is} (U_{is}^{\text{eff}} - \mu_{\text{F}}) \hat{n}_{is}.$$
(3)

这里的_µ,是指中间正常导体部分的费米能,它可以 通过一个门电压 V₂ 来控制.

对于左、右电极超导部分的电子哈密顿,还要加 上一个代表超导配对势的项 $V_{\text{pair}}^{\text{I}(R)} = \Delta e^{i\phi_{\text{I}(R)}} \sum_{i} (\hat{c}_{i,\uparrow}^{*} \hat{c}_{i,\downarrow}^{*} + \hat{c}_{i,\uparrow} \hat{c}_{i,\downarrow}).$ 因为左右电极没有加 横向电场,它们的 $V_{\text{E}}(i) = 0.$ 为了计算方便,我们把 能量、长度和电压的单位取为 $t \mid a_{e-e}$ 和t/e,此处e是电子电荷; a_{e-e} 是碳 – 碳键长,约为1.42Å.

在给出体系各个部分的哈密顿量后,就可以使 用实空间递推格林函数方法来计算 SGS-π 结的输 运行为^[9]. 计算过程中,我们先把系统划分为分层 结构,使得只有相邻的层间才有耦合,然后利用格林 函数递推公式来高效地计算准一维体系中的电导和 电流. 该方法最初是用来研究正常导体体系中的量 子输运行为的. 但经过一定的修改,同样也可以应用 到超导体中. 在超导体中的超流密度可以用下面的 公式来计算:

$$i_{c}(E) = \frac{e}{h} \operatorname{Tr} \{ H_{M-1,M} G_{M,M-1}^{<} + G_{M-1,M}^{<} H_{M,M-1} \}.$$
(4)

Tr{...}代表取迹运算. $H_{i_{j+1}}$ 代表体系中相邻两层 i, i+1之间的耦合矩阵元 $G_{i_{j+1}}^{<}$ 表示相应的'小于'格 林函数. 由于电流守恒的限制,计算所得电流的大小 与取的是哪两个相邻的层是没有关系的. 通过对 i_{i} (E)积分可得到总电流:

 $I_{e} = \int_{-\infty}^{+\infty} i_{e}(E) (E) dE = \int_{-\infty}^{0} i_{e}(E) dE.$ (5) 其中 f(E) 是费米分布函数 在实际计算中我们只对 零温情况感兴趣.

与前人已有的研究结果相同^[7 8],我们的计算 也表明,自旋极化态是 zigzag 边石墨带的电子基态. 在这个态中,石墨带的自旋密度分布在它的两边并 呈现反铁磁耦合.图1(a)右边给出了自旋极化态的 自旋密度 $N_s(i) = \hat{n}_{i,\uparrow} - \hat{n}_{i,\downarrow}$ 的分布.当在这个 石墨带加上一个横向电场,就会使得原本简并的自 旋能带发生劈裂.图1(b)给出了横向电场为 E_r = 0.001 时最靠近中性点的两条电子能带的形状. 而 能带劈裂的细节则在图 1(c)中给出,其中实线和虚 线分别代表两种自旋. 我们假定虚线(浅色)代表自 旋向上,而实线(深色)代表自旋向下. 从图中可以 看到,能带劈裂的大小是和费米面的位置有关的. 在 能带底部,自旋劈裂最大,随着费米面的升高,劈裂 则逐渐减小. 由于该自旋能带的劈裂,自旋向下的电 子能隙是减小的,而自旋向上的电子能隙则是增大 的. 因此当横向电场强度增大到一定的临界值时,自 旋向下电子的能隙有可能变成0,使得 zigzag 边石墨 带变成了一个半金属.

但是,实际上,要使 SGS- π 结发生 0- π 相变,所 需要的横向电场强度要比这个临界值小得多.因此, 我们的 SGS- π 结可以安全地工作,而不必担心外电 场会对器件产生破坏.由于电子的自旋能带发生了 劈裂,所以横向电场下的 zigzag 边石墨带的能带和 铁磁金属中的十分类似.因此当库珀对通过石墨带 从左边的超导体隧穿到右边的超导体中去的时候, 也会像在铁磁金属中一样,获得一个非零的动量 δq .在图 1(c)中就示意地画出了费米面上的电子是 如何获得这个非零动量 δq 的.有了它,原来的约瑟 夫森电流 – 相位关系 $I_c = I_0 \sin \Delta \phi$ 中必须加入一个 额外的相位 $\Delta \theta = \delta q L$.通过前面的分析知道 δq 是 和横向电场大小成正比的.因此,当横向电场加大到 某一个值时,等式 $\delta q L + \Delta \phi = \pi$ 就有可能成立,从 而导致 0- π 相变的发生.

图 2(a)中,我们给出了三个不同电场值 E_T = 0,0.001 和 0.002,一个长度为 220a₀ 的 8-zigzag 边 纳米石墨带构成的超导结中超流的电流 – 相位关系 图. 图中的 $I_0 = \frac{4et}{h}$. 计算过程中 ,两边电极的费米能 定为 0.2 ,而在中间导体中则为 0.15.从图 2(a)中 我们可以看到 ,当两边相位差固定在 π/2 时 ,一个 大小为 0.001 电场就可以使这个结从无电场时候的 0 态变到加电场时的 π 态. 在图 2(b)中,我们给出 了当两边超导电极的相位差 $\Delta \phi$ 固定在三个不同值 0.25 0.5 0.75 时 其 I。随着横向电场 E_T 的变化关 系. 从图中我们很容易看到 ,两边的相位差越大 ,该 超导结发生0-π相变所需要的横向电场就越小. 这是因为此时超流 – 相位关系里的相位包括以下两 部分 :一部分是两边电极的相位差 $\Delta \phi$,另一部分就 是 δ*qL.* 而电流从正变到负的条件就是这两部分相 位的和为 ㅠ. 所以当 0 – ㅠ 相变发生时 ,如果两边电 极的相位差较大 则所需 δqL 部分就比较小 相应的

图 2 (a)不同横向电场下的 SGS-π 结的电流 – 相位关系(b) 不同相差下的电流随横向电场的变化关系

横向电场也就比较小.

另一方面,从关系式 $\Delta \theta \propto \delta q L$ 可知,库珀对在 中间导体部分获得的额外相位差还和中间 zigzag 石 墨带的长度成正比.因此 改变中间石墨带的长度同 样能够导致0-π相变的发生.图 3(a)给出了不同 横向电场强度下超流 1。随着中间石墨带长度的变 化关系. 从图中可以看到,在横向电场下,随着超导 结长度的增加 [呈现周期性振荡的现象. 在不同的 横向电场强度下,超流振荡的周期L_T也不一样;L_T 可以通过公式 $L_{\rm T} = \frac{\pi}{\delta q}$ [1]计算得到. 在没有横向电 场时 L 的大小和超导结的长度 L 成反比 这和干净 极限下的超导/正常导体/超导结中的理论结果是一 致的. 当 $E_{\rm T}$ = 0.001 时 根据计算得到的石墨带的能 带可以估计出 $\delta q = 1.127 \times 10^{-3} \frac{2\pi}{a_0}$ 利用公式 $L_{\rm T} =$ $\frac{\pi}{\delta q}$ 计算得到的振荡周期 $L_{\rm T} = 444a_0$. 当 $E_{\rm T} = 0.002$ 时 $L_{\rm T}$ 的值为 219 a_0 . 这两个值和图 3(a)中的数值 模拟结果吻合的非常好.

图 3 (a)不同横向电场强度下,zigzag边石墨带超导结的超流 和结的长度 L 的关系 (b)固定长度和横向电场强度下,其超流 与中间石墨带上门电压 V_g 的关系

从图 1(c)可知 ,δq 的值和费米面的位置也有 很大关系. δq 在导带的底部达到最大值 ,随着费米 面的上移则逐渐减小. 因此通过门电压我们能够很 容易地改变 δq. 在图 3(b)中我们给出了当结的长 度 $L = 400a_0$ 和横向电场 $E_T = 0.002$ 时 I_c 随着 V_g 的变化关系. 从图中可知 , V_g 只需改变 0.01 就足以 使 SGS 超导结从 0 态变到 π 态. 这表明 SGS 超导结 的 0 – π 相变可以很容易地通过结上的门电压来控 制 SGS-π 结的这个特性可以大大扩展其在未来的 量子计算或者超导电子学领域中的应用.

从前面所述,我们已经知道有好几个参数可以 用来控制 SGS- π 结. 那么非常有兴趣的问题是:在 这些参数中,到底哪一个对于 SGS- π 结的调控更灵 敏和有效呢?根据0- π 相变的发生机制,我们知 道库珀对获得的非零动量 δq 在其中起了关键的作 用. 在数值计算过程中,我们发现在一个给定长度的 超导结中,当横向电场强度不是特别大的时候, δq 可以用一个近似公式, $\delta q = \mu_F^{\alpha}E_T$ 来拟合,其中 $\alpha \approx$ 11. 因此可以得出结论:相比于改变横向电场强度, 改变结上门电压可以更有效地控制 SGS- π 结. 当然 要使门电压能起作用 ,一个固定的横向电场仍然是 必须的.

尽管前面我们只是研究了超导体/8-zigzag 边纳 米石墨带/超导体结上的约瑟夫森效应 同样的结论 也能推广到更宽的石墨带上.对于更宽的石墨带.我 们发现使 $0 - \pi$ 相变发生所需的横向电场强度更 小. 然而理论研究也表明, 石墨带的自旋极化和自旋 非极化基态之间的能量差是和它的宽度成反比 的^[8].因此要保证系统能稳定地处于自旋极化态 下 zigzag 边石墨带的宽度就不能太大. Son^[8]等人 以及 Pisani 等人的研究结论都表明,对于 n-zigzag 边 纳米石墨带 ,当 n < 32 时 ,自旋反铁磁耦合的态 ,也 就是我们所说的自旋极化态仍然是一个很好的系统 基态. 所以,要使 SGS-π结能够很稳定地工作,它的 石墨带宽度就不能大于 7nm. 这个临界宽度条件对 于现在的纳米刻蚀技术已经不是什么严重的问题. 目前已经有研究表明,可以利用化学或者通过 STM 针尖刻蚀单层石墨片的方法产生宽度在 10nm 以下 的纳米石墨带^[4]. 另一方面,也有不少理论研究结 果表明 通过在石墨带的两边化学修饰上不同的原 子基团,可以增大石墨带的临界宽度,甚至都不需要 一个横向电场的作用就可以同样构造出类似的 SGS-π结.

最后,我们要指出,在我们的计算中使用了平均 场近似,因此电子关联效应被忽略了.第一性原理计 算,部分地考虑了电子的关联效应,所得结果也表明 石墨带的电子基态是自旋极化态^[10].目前用量子多 体方法研究 zigzag 边纳米石墨带电子基态的工作还 不多.但是已有的研究也表明,在 zigzag 边纳米石墨

带的基态中,电子自旋密度在石墨带的同一边呈现 铁磁耦合而在不同边之间是反铁磁耦合.因此我们 相信即使考虑电子关联效应,所得结论也不会和我 们平均场近似的结果有定性上的差异.

综上所述,我们的研究结果证明通过外加横向 电场的办法可以实现超导体/zigzag 边纳米石墨带/ 超导体结的可控超流 0 - π 相变.我们发现通过改 变横向电场强度大小,结的长度,以及结上的门电 压,可以很方便地控制 SGS-π 结的状态.这个可以 通过外加电场来控制 π 结的 0 - π 相变的特点是一 般的超导/铁磁层/超导结所不具备的.因此在未来 的超导电子学或者量子计算领域,预期我们提出的 这个 SGS-π 结有可能起到非常重要的作用.

参考文献

- [1] Buzdin A I. Rev. Mod. Phys. ,2005 ,77 :935
- $\left[\begin{array}{c} 2 \end{array} \right] \ \mbox{Mooij J E et al. Science}$, 1999 , 285 :1036
- [3] (a) Ryazanov V V et al. Phys. Rev. Lett., 2001, 86:2427;
 (b) Kontos T et al. Phys. Rev. Lett., 2002, 89:137007; (c)
 Cleuziou J P et al. Nature Nanotech., 2006, 153
- [4] Tapaszto L et al. Nat. Nanotechnol. ,2008 ,3 :397 ; Li X et al. Science ,2008 ,319 :1229
- [5] Novoselov K S et al. Science , 2004 , 306 666
- [6] Rycerz A , Tworzydło J , Beenakker C W. Nat. Phys. ,2007 ,3 : 172
- [7] Fujita M et al. J. Phys. Soc. Jpn. ,1996 ,65 :1920
- [8] Son Y W , Cohen M L , Louie S G. Nature , 2006 , 444 347
- [9] Lopez Sancho M P et al. J. Phys. F : Met. Phys. , 1984 , 14 : 1205
- [10] Hikihara T , Hu X , Lin H H et al. Phys. Rev. B , 2003 68 : 035432

封面故事。

将来的地球会继续变暖吗?

封面图是 IPCQ 政府间气候变化委员会)在 2007 年根据多气候模式集合(20 个左右)预测的本世纪 90 年代全球地表气 温增加的地理分布图.模式在预测中采用了未来温室气体中等程度的排放情景,即在未来 30 年中,通过各国政府的努力,温室 气体的人为排放要有相当程度的减少,即在 2050 年以前,与 2000 年水平相比减少幅度在 – 30% 至 + 5% 之间.这种情况下,全 球大气的温室气体浓度大致稳定在 500—550ppm,全球平均温度上升在 2.8℃左右(相对于工业化前的温度).图中的红色清 楚地表明,由于人类活动排放的温室气体造成的温室效应,全球未来一个世纪将是更为温暖的世界.尤其是北半球中高纬地 区温度的增加更为明显,北极地区的增暖最大.中国也是一个明显的增温区.在北大西洋地区温度增加较小,这与北大西洋温 盐环流的减弱有关.在未来全球继续变暖的气候背景下,高温极端值和热浪的频率和强度将可能增加,同时暴雨和干旱的发 生率和强度也可能增加.

摘自 IPCC 2007 年报告