晶粒尺寸和应变的 X 射线粉末衍射法测定

骆 军 朱航天 梁敬魁[†]

(中国科学院物理研究所 北京凝聚态物理国家实验室 北京 100190)

摘 要 文章介绍了根据 X 射线粉末衍射线形测定试样晶粒度和点阵畸变(应变)的主要方法,并以 Co_3O_4 纳米材 料晶粒度和应变的测量为例加以说明. 通过与扫描电镜观察的统计结果进行比较,分析了各种方法计算晶粒尺寸的 可靠性和适用性.

关键词 X射线粉末衍射 晶粒尺寸 应变 纳米颗粒

Determination of crystallite size and strain by X-ray powder

LUO Jun ZHU Hang-Tian LIANG Jing-Kui[†]

(Beijing National Laboratory for Condensed Matter Physics , Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China)

Abstract The main methods to determine crystallite size and strain from X-ray powder diffraction data are presented, illustrated by measurements on Co_3O_4 nanoparticles. Through comparison with the size distribution determined from scanning electron microscopy, the reliability and applicability of these methods are analyzed.

Keywords X-ray powder diffraction , crystallite size , strain , nanoparticles

1 引言

众所周知,晶粒尺寸小到一定程度时会造成 X 射线峰形宽化.因此,基于 X 射线峰形宽化,可以反 推出晶粒大小.通常,当晶粒尺寸在100 nm 以下时, 能够用 X 射线峰形宽化测得可靠的晶粒尺寸.纳米 材料的发展,使得晶粒度表征变得更加常用和重要. 如何利用常规 X 射线粉末衍射(XRD)技术,测量晶 粒平均尺寸(甚至是某一方向的晶粒平均尺寸)成 为众多物理学、化学和材料科学研究工作者面临的 常见问题.

对于无缺陷、无畸变且晶粒足够大(约1μm,晶 粒太大,可能会出现不连续的衍射图)的多晶试样, 理论上其 XRD 图谱应是宽度为弧秒量级的锐峰.由 于实验条件和仪器设备的限制,包括所用 X 射线辐 射光源焦点的大小和光谱的特性(非完全单色性), 实验所用的入射和接收光阑系统(水平发散狭缝、 Soller 狭缝垂直发散度以及接收光阑)、试样状态 (平板或是圆柱形)和衍射光路调整不准确等仪器 因素,以及试样本身的晶粒过细和由于点缺陷(填 隙原子、置换原子、点阵空位)、位错、堆垛层错等点 阵畸变产生的内应力等结构因素的综合影响,使实 际测得的衍射峰形加宽.

实验测得的衍射线实际峰形 $h(\varepsilon)$ 是仪器权重 函数 $g(\varepsilon)$ 和试样结构因素引起的峰形函数 $f(\varepsilon)$ 的 卷积或卷迭^[1]:

$$h(\varepsilon) = \int_{-\infty}^{+\infty} g(\eta) (\varepsilon - \eta) d\eta. \qquad (1)$$

这种卷积可以简化为

 $h(\varepsilon) = g(\varepsilon) * f(\varepsilon) , \qquad (2)$

g(ε)是各种仪器因素的多重卷积造成的峰形. 变量
 ε 是衍射线上任何一点的衍射角 2θ, 它与理想衍射

²⁰⁰⁸⁻⁰³⁻³¹ 收到

[†] 通讯联系人. Email:jkliang@aphy.iphy.ac.cn

角 $2\theta_0$ 存在角偏离.(1)式中的 ε 和辅助变量 η 与 2θ 有相同的量纲.

用 X 射线粉末衍射法测定试样的晶粒大小和 应变 首先必须从实验测得的衍射峰形 $h(\varepsilon)$ 中得出 试样结构因素所产生的衍射峰形 $f(\varepsilon)$,然后再从 (ε)中取得晶粒尺寸和应变的信息.在同一实验条 件下 $g(\varepsilon)$ 可用无晶粒细化和无应变的标准试样测 定的衍射峰形来表示.因此 $f(\varepsilon)$ 可通过(2)式,从 $h(\varepsilon)$ 中解卷积而得. 如果试样只存在晶粒尺寸增 宽,或是只存在应变增宽,则可直接从ƒ(ε)求得晶 粒尺寸或应变 如果两种增宽因素同时存在 则必须 把这两种效应区分开.鉴于材料(尤其是纳米材料) 的晶粒度和内应力对其物理性能有显著的影响,本 文介绍应用 X 射线粉末衍射法测定材料的晶粒度 和点阵应变的主要方法.

试样结构因素衍射线形 $f(\varepsilon)$ 的测定 2

如果要从粉末衍射峰形 $h(\varepsilon)$ 中准确地分离出 试样的结构因素所产生的峰形 $f(\varepsilon)$,首先必须对

XRD 数据进行预处理. 如对衍射图谱进行平滑处 理 扣除本底 并对入射光谱的色散效应进行校正 , 剥离 K_"辐射.在此基础上,对(2)式进行解卷积求 $f(\varepsilon)$,从而得出试样结构因素产生衍射峰形的宽度. 求 (ε)的方法很多,其中主要有 Fourier 变换法、近 似函数法和简化法等.

2.1 Fourier 变换法^[1]

设(2)式中 $h(\varepsilon)$, g(ε)和 $f(\varepsilon)$ 的 Fourier 变换 分别为 H(ζ),G(ζ)和 F(ζ),根据 Fourier 积分定 理,并按 Stokes 法将积分关系用求和来代替,且 ε 的 范围从 ± ∞ 变为 ± $\frac{1}{2} \varepsilon_{m} (\varepsilon_{m}$ 是衍射峰的延伸极限, 即在 ε_m 之外,强度可认为已降到背底值).再略去 只影响衍射峰强度而不影响峰形的常数因子 1/ $\sqrt{2\pi}$,1/ $\varepsilon_{\rm m}$ 和 $\Delta \zeta$,得到

$$f(\varepsilon) = \sum_{\zeta} \frac{H(\zeta)}{O(\zeta)} \exp(-\frac{2\pi i \varepsilon \zeta}{\varepsilon_m}), \quad (3)$$

其中

$$H(\zeta) = \sum_{\varepsilon} h(\varepsilon) \exp(-\frac{2\pi i\varepsilon\zeta}{\varepsilon_m}) = \sum_{\varepsilon} h(\varepsilon) \cos\frac{2\pi\varepsilon\zeta}{\varepsilon_m} + i\sum_{\varepsilon} h(\varepsilon) \sin\frac{2\pi\varepsilon\zeta}{\varepsilon_m} = H_r(\zeta) + iH_i(\zeta), \quad (4)$$

$$Q(\zeta) = \sum_{\varepsilon} g(\varepsilon) \exp(-\frac{2\pi i \varepsilon \zeta}{\varepsilon_m}) = \sum_{\varepsilon} g(\varepsilon) \cos \frac{2\pi \varepsilon \zeta}{\varepsilon_m} + i \sum_{\varepsilon} g(\varepsilon) \sin \frac{2\pi \varepsilon \zeta}{\varepsilon_m} = G_i(\zeta) + i G_i(\zeta), \quad (5)$$

GH的下标r和i分别表示实部和虚部.

$$F(\zeta) = \frac{H(\zeta)}{G(\zeta)} = \frac{H_i(\zeta) + iH_i(\zeta)}{G_i(\zeta) + iG_i(\zeta)} = \frac{[H_i(\zeta) + iH_i(\zeta)]G_i(\zeta) - iG_i(\zeta)]}{G_i^2(\zeta) + G_i^2(\zeta)}$$
$$= \frac{H_i(\zeta)G_i(\zeta) + H_i(\zeta)G_i(\zeta) + iH_i(\zeta)G_i(\zeta) - iH_i(\zeta)G_i(\zeta)}{G_i^2(\zeta) + G_i^2(\zeta)}$$
$$= F_i(\zeta) + iF_i(\zeta).$$
(6)

 $= F_{i}(\zeta) + iF_{i}(\zeta).$

Fourier 级数 $H_{i}(\zeta)$, $H_{i}(\zeta)$, $G_{i}(\zeta)$ 和 $G_{i}(\zeta)$ 可 利用(4)式和(5)式,根据实验所测得的衍射峰形h (ε)和仪器峰形 g(ε)求得. 实验过程中,必须以很 小的步长来测量衍射强度. 在整个实验线形内要有 足够多的间隔数 以确保在 $\pm \frac{1}{2} \varepsilon_m$ 范围外衍射强度 降为 0. 例如 ,为方便起见 ,在测出强度的谱线角范 围 ε_m 内分成 60 等份,每一等份内的实验强度计数 时间相等,并以这些实验强度数据作为 $H(\zeta)$, H_{i} (ζ) , $G(\zeta)$ 和 $G(\zeta)$ 的 Fourier 系数.

试样的结构因素所产生的衍射峰形 $f(\varepsilon)$ 可根 据下面的(7)式计算:

$$f(\varepsilon) = \sum_{\zeta} F_r(\zeta) \cos \frac{2\pi\varepsilon\zeta}{\varepsilon_m} + \sum_{\zeta} F_r(\zeta) \sin \frac{2\pi\varepsilon\zeta}{\varepsilon_m}.$$
 (7)

同样在 ε_m 角范围内分成 60 等分 得到

$$f(\varepsilon) = \frac{1}{60} \sum_{\zeta} F_{i}(\zeta) \cos \frac{2\pi\varepsilon\zeta}{60} + \frac{1}{60} \sum_{\zeta} F_{i}(\zeta) \sin \frac{2\pi\varepsilon\zeta}{60}.$$
 (8)

Fourier 变换法数学推理严格,定义明确,所求 的是结构因素所产生的衍射峰形 $f(\varepsilon)$,误差较小. 但是它包含着大量而繁琐的计算工作,难以靠人工 完成 必须靠计算机进行运算.随着计算技术的发展 与完善 Fourier 变换法的使用将随之广泛.

2.2 近似函数法^[2]

近似函数法是用某种近似函数来取代(2)式中 的三个峰形函数 $h(\varepsilon) g(\varepsilon)$ 和 $f(\varepsilon)$ 以实现直接计 算衍射线宽的方法. 对于对称衍射线形用实验测得 的三个参数 衍射峰高 (0) 衍射峰面积 $A = \int (2\theta)$ d(2 θ)和衍射峰强度最大值一半的全宽(FWHM) 2ω ,以及由它们推导得到的积分宽度 $\beta = A/I(0)$ 和 形状因子 $\varphi = 2\omega/\beta$,来表征.

本文外文字母的上标 $h g \pi f 分别表示 h(\varepsilon)$, g(ε)和 f(ε)函数,下标 c,G 和 V 分别表示 Cauchy 函数、Gaussian 函数和 Voigt 函数. $h(\varepsilon)$,g(ε)和 f(ε)三个函数可用同一函数表征.

(1) 三个函数均为 Cauchy(即 Lorentz)函数

$$I_{c}(x) = I_{c}(0) \frac{\omega_{c}^{2}}{\omega_{c}^{2} + x^{2}} , \qquad (9)$$

$$I_{c}(0) = A_{c}/\pi\omega_{c}$$
, (10)

$$\beta_{\rm c} = A_{\rm c}/I_{\rm c}(0) = \pi\omega_{\rm c} , \qquad (11)$$

$$\varphi_{c} = \frac{(2\omega)_{c}}{\beta_{c}} = \frac{2}{\pi} = 0.6366197$$
 , (12)

$$\boldsymbol{\beta}_{c}^{h} = \boldsymbol{\beta}_{c}^{g} + \boldsymbol{\beta}_{c}^{f} , \qquad (13)$$

$$(2\omega)_{c}^{h} = (2\omega)_{c}^{g} + (2\omega)_{c}^{f}.$$
 (14)

(2) 三个函数均为 Gaussian 函数

$$I_{\rm c}(x) = I_{\rm c}(0) \exp(\frac{-\pi x^2}{\beta_{\rm c}^2})$$
, (15)

$$I_{\rm G}(0) = A_{\rm G} / \beta_{\rm G}$$
 , (16)

$$\beta_{\rm G} = \frac{1}{2} \sqrt{\frac{\pi}{\ln 2}} (2\omega)_{\rm G}$$
, (17)

$$\varphi_{\rm G} = \frac{(2\omega)_{\rm G}}{\beta_{\rm G}} = 2\sqrt{\frac{\ln 2}{\pi}} = 0.9394372$$
, (18)

$$(\beta_{\rm G}^{h})^2 = (\beta_{\rm G}^{g})^2 + (\beta_{\rm G}^{f})^2$$
, (19)

[(2ω)^h_G]² = [(2ω)^s_G]² + [(2ω)^f_G]². (20) (3) 三个函数均为 Voigt 函数

Voigt 函数是 *m* 个 Cauchy 函数和 *n* 个 Gaussian 函数的卷积.

$$I_{v}(x) = \operatorname{Re}\{\beta_{c}I_{c}(0)\}_{c}(0) \exp[k^{2}(1-iy)^{3}] \operatorname{erf}[k(1-iy)]\},$$
(21)

其中
$$k = \frac{\beta_c}{\sqrt{\pi\beta_c}}$$
, $y = \frac{\pi x}{\beta_c}$ erfc 为余概率函数 $k = 0$

为 Gaussian 函数 k = ∞ 为 Cauchy 函数.

 $I_{\rm V}(0) = \beta_{\rm c} I_{\rm c}(0) I_{\rm c}(0) \exp(k^2) \operatorname{erfc}(k)$ (22)

$$A_{\rm V} = \beta_{\rm c}\beta_{\rm G}I_{\rm c}(0)I_{\rm G}(0) , \qquad (23)$$

$$\beta_{\rm V} = \frac{A_{\rm V}}{I_{\rm V}(0)} = \frac{\beta_{\rm G}}{\exp(k^2) \operatorname{erfd}(k)} = \frac{\beta_{\rm G} \exp(-k^2)}{\operatorname{erfd}(k)} \quad (24)$$

$$\frac{\beta_{\rm G}}{\beta_{\rm V}} = \frac{{\rm erf}(k)}{{\rm exp}(-k^2)}.$$
 (25)

取近似值

$$\beta_{\rm V}^2 \approx \beta_{\rm c} \beta_{\rm V} + \beta_{\rm G}^2 , \beta_{\rm V} \approx \beta_{\rm c} + \frac{\beta_{\rm G}^2}{\beta_{\rm V}} , \frac{\beta_{\rm V}}{\beta_{\rm G}} = \frac{\beta_{\rm c}}{\beta_{\rm G}} + \frac{\beta_{\rm G}}{\beta_{\rm V}} = k \sqrt{\pi} + \frac{\beta_{\rm G}}{\beta_{\rm V}} ,$$
(26)

$$(2\omega)_V \approx \frac{2\beta_c}{\sqrt{\pi}}\sqrt{1+k^2} = \sqrt{\frac{(2\omega)_c^2}{\ln^2} + (2\omega)_c^2}$$
, (27)

由(25)和(27)式得

$$\varphi_{\rm V} = \left(\frac{2\omega}{\beta}\right)_{\rm V} \approx \frac{2}{\sqrt{\pi}} \frac{\sqrt{1+k^2} \operatorname{erfd}(k)}{\exp(-k^2)}.$$
 (28)

表 1 是文献 2]列出的 Voigt 函数 k = 0—3.9 范围的($2\omega/\beta$)_V $k \ \pi \beta_c/\beta_v$ 数值,同时表 1 也列出 β_c/β_v 的计算结果.从表 1 可见,当 k = 0时,Voigt 函 数还原为 Gaussian 函数,当 k 趋向于无穷大时,Voigt 函数接近于 Cauchy 函数.当 k = 3.9时 β_c 比 β_c 约 大 7 倍 ($2\omega/\beta$)_V 比 $2\omega_c/\beta_c$ 约大 1.5%. k = 3.9时 已接近于 Cauchy 函数.

表1 Voigt 函数 k = 0—3.9 范围的 $2\omega/\beta \beta_{\rm C}/\beta \ln \beta_{\rm c}/\beta$ 值

$2\omega/\beta$	k	$\beta_{\rm G}/\beta$	$eta_{ m c}/eta$	$2\omega/\beta$	k	$\beta_{\rm G}/\beta$	$eta_{ m e}/eta$
0.9395	0.0	1.000	0	0.6682	2.0	0.2544	0.9018
0.8977	0.1	0.8965	0.1589	0.6658	2.1	0.2451	0.9123
0.8628	0.2	0.8090	0.2869	0.6636	2.2	0.2356	0.9187
0.8326	0.3	0.7346	0.3906	0.6617	2.3	0.2267	0.9242
0.8079	0.4	0.6708	0.4756	0.6600	2.4	0.2185	0.9295
0.7866	0.5	0.6157	0.5457	0.6585	2.5	0.2108	0.9341
0.7681	0.6	0.5678	0.6038	0.6570	2.6	0.2036	0.9383
0.7530	0.7	0.5259	0.6525	0.6557	2.7	0.1969	0.9423
0.7397	0.8	0.4891	0.6935	0.6546	2.8	0.1905	0.9454
0.7282	0.9	0.4565	0.7282	0.6535	2.9	0.1846	0.9489
0.7184	1.0	0.4276	0.7579	0.6525	3.0	0.1790	0.9518
0.7099	1.1	0.4017	0.7832	0.6516	3.1	0.1737	0.9544
0.7026	1.2	0.3785	0.8051	0.6507	3.2	0.1687	0.9568
0.6961	1.3	0.3576	0.8240	0.6499	3.3	0.1640	0.9593
0.6903	1.4	0.3387	0.8405	0.6492	3.4	0.1595	0.9612
0.6854	1.5	0.3216	0.8550	0.6486	3.5	0.1553	0.9634
0.6812	1.6	0.3060	0.8678	0.6480	3.6	0.1513	0.9654
0.6774	1.7	0.2917	0.8789	0.6474	3.7	0.1474	0.9667
0.6740	1.8	0.2786	0.8889	0.6469	3.8	0.1438	0.9685
0.6709	1.9	0.2665	0.8975	0.6464	3.9	0.1403	0.9698

物理·38卷(2009年)4期

如果衍射线形属 Voigt 函数 ,则可利用表 1 的 ($2\omega/\beta$)_v $k \ \pi \beta_c/\beta_v$ 值 ,通过 $\frac{\beta_c}{\beta_c} = k \sqrt{\pi} \pi \frac{\beta_c}{\beta_v} = \frac{\beta_c}{\beta_c} \times \frac{\beta_c}{\beta_v}$ 关系式求 β_c/β_v ,从而获得表征衍射线形的参数 : Cauchy 函数和 Gaussian 函数的积分宽度的分量.

对于 $h(\varepsilon)$ 和 $g(\varepsilon)$ 衍射线形,假如衍射峰形为 Voigt 函数,则从实验所测得的($2\omega/\beta$)比值,根据表 1,就可以获得 Cauchy 和 Gaussian 组分 β_c/β_v 和 β_c/β_v . β_v . 但为了避免从表 1 内插获取 $h(\varepsilon)$ 和 $g(\varepsilon)$ 衍射 线形的线宽 β_c/β_v 和 β_c/β_v 值,文献 3]拟合下列经 验关系式,其最大误差约为 1%,大多数情况远小于 1%.

$$\frac{\beta_{\rm c}}{\beta_{\rm V}} = a_0 + a_1 \varphi + a_2 \varphi^2 , \qquad (29)$$

 $\frac{\beta_{\rm G}}{\beta_{\rm V}} = b_0 + b_{1/2} \sqrt{(\varphi - \frac{2}{\pi})} + b_1 \varphi + b_2 \varphi^2 \,\,\text{(30)}$

其中 φ = ($2\omega/\beta$)_v μ_0 = 2.0207 μ_1 = -0.4803 μ_2 = -1.7756 ,

 $b_0 = 0.6420$, $b_{1/2} = 1.4187$, $b_1 = -2.2043$, $b_2 = 1.8706$.

假如需要的话 $f(\varepsilon)$ 衍射线形 β_{c}/β_{v} 和($2\omega/\beta_{v}$, 也可用下列经验关系式计算 ,其准确度也在 1% 以内.

$$\frac{\beta_{\rm G}}{\beta_{\rm V}} = -\frac{\sqrt{\pi}}{2}k + \frac{1}{2}\sqrt{\pi k^2 + 4} - 0.234k \exp(-2.176k) , \qquad (31)$$

$$\left(\frac{2\omega}{\beta}\right)_{V} = \sqrt{\frac{1+k^{2}}{\pi}} \left[-k\sqrt{\pi} + \sqrt{\pi k^{2} + 4}\right] - 0.1889 \exp(-3.5k). \quad (32)$$

近似函数法不能得到真正的结构因素产生的峰 形 (ɛ) ,其物理意义也不是很明确 ,其准确度取决 于所选用的函数与实际峰形半高宽吻合的程度 ,但 此法比较简便易行 ,因而得到广泛应用.

2.3 简化法

简化法是直接依据实验测定的衍射线形的宽度,不需要求解试样结构因素所产生的衍射线形方 (ε). 表征衍射线形的宽度有:半高宽(FWHM)2 ω , 积分宽度 β 和均方差宽度 $W(\omega)$ 等, $W(\varepsilon) =$ $\frac{\int (\varepsilon - \varepsilon')^2 I(\varepsilon) d\varepsilon}{\int I(\varepsilon) d\varepsilon} \varepsilon'$ 为衍射峰的质心. $W(\varepsilon)$ 计算 繁琐,工作量大,且物理意义也不甚明确,不被常用. 如果只研究同一试样在不同条件下晶粒尺寸和应变的相对变化,由于积分宽度 β 和 2 ω 数值相近,且它 们对 $h(\varepsilon)$, $g(\varepsilon)$, $f(\varepsilon)$ 三者的关系是相同的,2 ω 值 可以从衍射图谱上直接读出,比较方便.因此作为定 性比较,常用的是 2 ω 值.在极限情况下,如果 $h(\varepsilon)$, $g(\varepsilon)$ 和 $f(\varepsilon)$ 全为 Cauchy 或 Gaussian 函数线形,则 可从(2 ω)^b_c和(2 ω)^c_c或(2 ω)^b_c和(2 ω)^b_c。的实验值 分别用式(14)或(20)求相应的半高宽(2 ω)^f_c或 (2 ω)^f_c值.

虽然实际线形不可能是纯 Gaussian 型或 Cauchy型,但对于 Debye – Scherrer 衍射几何照相 法,特别是低吸收试样和背反射角,衍射线形接近于 Gaussian 函数.而对于高分辨的 Bragg – Brentano 衍 射几何的衍射仪,则其衍射线形更接近于 Cauchy 函 数,通常可用 Bragg – Brentano 型测角仪测得的衍射 线的 FWHM 定性评估试样的晶粒度.

简化法虽然测量结果的准确性不高,物理意义 也不明确,但由于简便,定性比较某一体系试样的晶 粒度和应变仍在实际工作中获得使用.

ƒ(ε)线形宽化与试样结构参数的关系

3.1 $f(\epsilon)$ 线形宽化与晶粒尺寸的关系

如果试样无应变 ,只有晶粒细化引起 $f(\varepsilon)$ 线形 宽化 ,则晶粒尺寸 D 可用 Scherrer 关系式表征^[4]:

$$D_{hkl} = \frac{K\lambda}{L_s \cos\theta_{hkl}} , \qquad (33)$$

式中 λ 和 θ 分别为辐射波长和 Bragg 衍射角 ,K 为 常数 L_s 为晶粒细化产生的衍射线宽度 ,用 2 θ 标度 , 单位为弧度. L_s 取 FWHM 即 2 ω 时 ,K = 0.89 ; L_s 取 积分宽度时 K = 1. 由 f(ε)线形宽度所测定的 D_{hkl} 值是指衍射区内衍射面(hkl) 法线方向的晶粒尺寸 的某种权重平均. 由晶粒细化造成的 f(ε)宽化的线 形 ,一般认为与 Cauchy 函数相符合 ,常用 Cauchy 函 数拟合.

3.2 $f(\epsilon)$ 线形积分宽度与微观应变的关系

Wilson^[5]定义晶体点阵的微观畸变(应变) $e \approx \Delta d d$,应变乘以弹性模量即为应力,推导得无晶粒细化增宽,且只有由于微观畸变产生的线形,它接近于 Gaussian 函数线形.其积分宽度 β_c 与晶体点阵畸变

(应变) e 的关系如下:

$$\beta_{\rm G} = 4e {
m tg} \theta$$
, $e = \beta_{\rm G} / 4 {
m tg} \theta$, (34)
定义表观畸变

$$\eta = \beta_{\rm G} \cot\theta , \qquad (35)$$

则 $\beta_c = \eta t_g \theta$, $\eta = 4e$. (36) 如果晶体点阵畸变用均方差增宽 $W(\varepsilon)$ 表示,则点 阵畸变均方差 < e^2 > 为

 $\langle e^2 \rangle = W(\varepsilon)/4tg\theta$, (37) 式中 β_c 和 W(ε)均是以弧度为单位的标度值.

表观畸变 η 与均方差根畸变 $\sqrt{\langle e^2 \rangle}$ 的关系为 $\eta = 2\sqrt{2\pi}\sqrt{\langle e^2 \rangle} = 5.0\sqrt{\langle e^2 \rangle}$,(38) $e = 1.25\sqrt{\langle e^2 \rangle}$.(39)

3.3 晶粒细化与点阵畸变同时存在

(1)如果晶粒细化的 ƒ(ε)线形和晶格点阵畸变
(应变)的 ƒ(ε)线形都假设为 Cauchy 函数 ,则根据
(33)式和(34)式 ƒ(ε)线形的积分宽度 β。是晶粒 细化和点阵应变所产生的积分宽度相加 ,即

$$\beta_{\rm c} = \frac{K\lambda}{D_{hkl}\cos\theta} + 4e\mathrm{tg}\theta \quad , \qquad (40)$$

$$\beta_{\rm c}\cos\theta = \frac{K\lambda}{D_{hkl}} + 4e\sin\theta$$
. (41)

f(ε)线形宽化用积分宽度 $β_e$ 来表征,常数 K = 1 D 为衍射晶面法线方向的尺寸, $β_e$ 以弧度为单位,则可用 $β_e \cos\theta$ 对 sin θ 作图,截距求 D,斜率求点阵畸变 e.

(2)如果晶粒细化和点阵畸变的 ƒ(ε)线形都假 设为 Gaussian 函数 则 ƒ(ε)线形的积分宽度为 β_G. 对于 Gaussian 函数 总积分宽度的平方等于(33)式 和(34)式积分宽化平方之和 ,得

$$\beta_G^2 = \left(\frac{K\lambda}{D_{hkl}\cos\theta}\right)^2 + \left(4e\mathrm{tg}\theta\right)^2 , \qquad (42)$$

$$\beta_G^2 \cos^2 \theta = \left(\frac{K\lambda}{D_{hkl}}\right)^2 + 16e^2 \sin^2 \theta . \qquad (43)$$

同理可用 $\beta_{\rm G}^2 \cos^2 \theta$ 对 $\sin^2 \theta$ 作图,截距求晶粒尺寸 *D*, 斜率求点阵畸变 *e*.

(3)理论分析和实验结果都倾向于晶粒细化接 近于 Cauchy 函数增宽的线形,而点阵畸变则近似于 Gaussian 函数增宽线形.实验测得的衍射线的积分 宽度 β 是 Cauchy 型函数积分宽度 β. 和 Gaussian 型 函数积分宽度 $\beta_{\rm c}$ 的卷积^[67]

$$\beta = \beta_{\rm G} \frac{\exp[-(\beta_{\rm c}/\beta_{\rm G})^2/\pi]}{1 - \exp[(\beta_{\rm c}/\beta_{\rm G})/\sqrt{\pi}]} , \quad (44)$$

其中 erf 为误差函数, erf(x) = $\frac{2}{\sqrt{\pi}} \int_0^x e^{-w^2} dw$,且 erfc(x) = 1 - erf(x), erfc(x)为互补误差函数. 经

ertd(x) = 1 - ert(x) ertd(x) 万互补误差函数. 经 化简得满意的近似^[8]

$$\frac{\beta_c}{\beta} = 1 - \left(\frac{\beta_c}{\beta}\right)^2, \qquad (45)$$

利用(45)式根据(33)式和(34)式得

$$\frac{K\lambda}{\beta D \cos\theta} = 1 - \frac{16e^2}{\beta^2 \cot^2\theta} , \qquad (46)$$

$$\frac{\beta^2}{\mathrm{tg}^2\theta} = 16e^2 + \frac{K\lambda}{D} \left(\frac{\beta}{\mathrm{tg}\theta\mathrm{sin}\theta}\right). \qquad (47)$$

根据(47)式,让 $\beta^2/tg^2\theta$ 对 $\beta/(tg\theta\sin\theta)$ 作图,纵坐 标截距为 16 e^2 ,斜率为 $K\lambda/D$,从而可分别求得晶粒 尺寸和点阵应变.

如果能够测定 2 条以上衍射线的宽化,则可从 其宽化的数值与 1/cos θ 或 tg² θ 的关系,判断试样线 形加宽主要是由晶粒细化使衍射线形加宽,或是主 要由于应变所致.对于正交晶系,如果测定了一系列 的(*h*00)(0*k*0)和(00*l*)衍射线的宽化,则可确定晶 粒形状和应变分布.

3.4 利用一条衍射线的宽化测定晶粒度和应力[3]

基于晶粒细化引起衍射线增宽接近于 Cauchy 函数的线形,而点阵畸变的衍射线增宽则接近于 Gaussian 函数的线形,Langford 等³¹提出,假设衍射线形为 Voigt 型函数 利用实验测得的待测试样和标准试样 (无晶粒细化和点阵畸变)的半高宽(2ω)^h和(2ω)^g, 衍射线的积分强度 A 和峰值 I_0 ,求积分宽度 $\beta^h = (A/I_0)^h$ 和 $\beta^e = (A/I_0)^e$,计算形状因子 $\varphi^h = (2\omega/\beta)^h$ 和 $\varphi^e = (2\omega/\beta)^e$.根据实验所得的数据,通过表 1 的内 插或利用关系式(29)(30)和相关常数,分别求出 (β_c/β)^h和(β_c/β)^e.拟及(β_c/β)^g和(β_c/β)^g 继而求 得 β_c^h 和 β_c^e ,以及 β_c^h 和 β_c^e .利用(13)式和(19)式求得 待测试样由结构因素引起的 Cauchy 函数积分宽度 β_c^i 和 Gaussian 函数积分宽度 β_c^f .根据(33)式和(34)式 求出该试样的晶粒度和应变.

这一方法仅从一条符合 Voigt 函数分布的衍射 线中分离出 Cauchy 函数组分的积分宽度 β_c 和 Gaussian 函数积分宽度 β_c ,同时求得试样的晶粒度 和应变. 如果应用这一方法测定不同(*hkl*)的多条衍 射线 ,则可以获得晶粒形状和晶体点阵应变的分布. 这一方法的误差取决于衍射峰形是否符合 Voigt 函数分布和实验条件. 首先仪器几何宽度 β^s不 能太大. 一般情况下,结构因素线宽 β^f 对 β^s 的 Gaussian 组分对误差的敏感度比 Cauchy 组分小,所 以单线法对应变的估算值比晶粒度精确. 长时间的 计数,特别是在本底和峰值邻近位置,以及用单色器 消除 K_{a2}辐射,均可提高结果的准确度. 除了线形不 对称性相对很大以外,线形的不对称性引起的系统 误差只有百分之几. 一般情况下,所得结果的综合误 差小于 20%. 单线法由于简便,且所得结果的误差 也不太大,在实际工作中获得较广泛的应用.

4 示例

4.1 仪器几何宽度的测定

一般情况下,由于衍射仪的几何性质,影响衍射 线的峰形和位置偏离理想状态,致使实际测得的衍 射峰形宽化^[9].为了去除衍射仪本身带来的峰形宽 化,需要测量无应变、无晶粒细化的标准样品的峰 形.以标准样品的峰形宽度作为某一几何条件下仪 器的几何宽度,然后从待测样品的峰形中扣除仪器 几何宽度,得到待测样品的结构因素所产生的衍射 峰形,最后计算得到待测样品的晶粒尺寸和应变.本 实验采用无应变、无晶粒细化的 LaB。作为标准样 品,LaB。具有简单立方结构,点阵常数 *a* = 4.15695Å,衍射线分布均匀,是较为理想的测量仪 器几何宽度的标准样品.

实验所用衍射仪为 Rigaku D/max 2500,采用 Cu Kα 辐射(50 kV × 250 mA)和石墨单色器.测角 仪半径为 185 mm.为了得到高质量的衍射数据,发 散狭缝发散角度为 0.5°,接收狭缝宽度为 0.15 mm, 限制垂直方向的 Soller 狭缝为 5°(根据收集衍射数 据的起始 2 θ 角度、发散狭缝发散角度和测角仪半 径,可以计算得到试样表面被辐射的宽度,从而确定 合适的发散度或起始收集数据角度.在我们的实验 条件下 2 θ 小于 20°时,辐射宽度大于样品的宽度, 因此采用 20°之后的衍射图谱来计算晶粒尺寸 \int °¹. 数据采用步进方式收集,角度范围为 20° ≤ 2 θ ≤ 120°,步长为 2 θ = 0.02°,采样时间每步 2s.

测得衍射数据经扣除背底并剥离 $K_{\alpha 2}$ 后,提取衍 射峰强度 I、面积 A 及半高宽 2ω 等信息,并计算其积 分宽度 β 以及 $2\omega/\beta$ β_c 和 β_c 值,其中 β_c 和 β_c 值分 别由(29)式和(30)式计算得到. LaB₆ 的衍射图谱如 图 1 所示,所得 LaB₆ 标准样品的数据见表 2.

图 1 LaB₆ 标准样品的 XRD 图谱

表 2 LaB_6 标准样品的峰位置 2 θ 、半高宽(2 ω)*、积分宽度(β)* 以 及(2 ω/β)* β_c^g 和 β_c^g 值

2 <i>θ/</i> (°)	hkl	(2ω)∛∕(°)	(β) ^g /(°)	(2 <i>ω/β</i>) ^g	$oldsymbol{eta}_{ ext{c}}^{ ext{g}}$	$oldsymbol{eta}_{ ext{G}}^{ extsf{g}}$
21.329	100	0.076	0.106	0.7170	0.0809	0.0451
30.348	110	0.073	0.098	0.7449	0.0664	0.0495
37.403	111	0.067	0.090	0.7444	0.0611	0.0453
43.469	200	0.073	0.095	0.7684	0.0573	0.0539
48.919	210	0.071	0.091	0.7802	0.0514	0.0545
53.947	211	0.067	0.090	0.7444	0.0611	0.0453
63.180	220	0.070	0.091	0.7692	0.0547	0.0519
67.508	300	0.069	0.091	0.7582	0.0579	0.0492
71.706	310	0.070	0.093	0.7527	0.0608	0.0489
75.804	311	0.070	0.094	0.7447	0.0638	0.0474
79.824	222	0.074	0.100	0.7400	0.0693	0.0491
83.800	320	0.078	0.102	0.7647	0.0627	0.0569
87.747	321	0.076	0.103	0.7379	0.0721	0.0450
95.633	400	0.073	0.101	0.7228	0.0753	0.0447
99.602	410	0.083	0.113	0.7345	0.0802	0.0538
103.620	411	0.087	0.118	0.7373	0.0828	0.0571
107.705	331	0.089	0.120	0.7417	0.0825	0.0595
111.891	420	0.095	0.131	0.7252	0.0968	0.0589
116.204	421	0.095	0.135	0.7037	0.1085	0.0519

粉末衍射线随衍射角度的增加而宽化,因此必须考虑衍射峰形半高宽随衍射角的变化.对于 LaB₆标准样品,它的衍射峰形半高宽随衍射角的变化,表示了仪器几何宽度随衍射角的分布情况.文献[9]给出了各种根据理论推导的半高宽与衍射角的关系式.我们利用这些关系式对 LaB₆标准样品进行拟合,发现只有以下两个关系式拟合结果较好:

$$(2\omega)^2 = U_1 tg^2 \theta + V_1 tg \theta + W_1$$
, (48)
 $(2\omega)^2 = U_2 (tg \theta - 0.6)^2 + V_2 (tg \theta - 0.6) + W_2$.
(49)

为了便于在图中表示,我们分别以(48)式和 (49)式标注以上两个公式,式中 *U*₁,*V*₁,*W*₁和 *U*₂, *V*₂,*W*₂都作为可调参数来处理.2ω和β拟合结果分 别如图2和图3所示,说明仪器几何宽度随衍射角 的变化与理论推导基本吻合.(49)式拟合结果更好 一些,其原因可能是(48)式是对中子衍射推导的, 而(49)式是对 X 射线衍射推导的^[9].

图 2 LaB₆ 标准样品的半高宽 2ω 随峰位置 2θ 的变化

图 3 LaB₆ 标准样品的积分宽度 β 值随峰位置 2 θ 的变化

4.2 待测试样衍射数据的收集

待测样品 Co_3O_4 纳米颗粒的 XRD 测量和前期 数据处理与 LaB_6 标准样品相同. Co_3O_4 属立方晶 系 ,具有尖晶石型结构 ,空间群为 Fd3m ,点阵常数 *a* =8.0843Å. 所得衍射图谱如图 4 所示 ,部分数据 (删去(531),(620),(711)等强度低的衍射数据) 列于表 3 中.

图 4 Co₃O₄ 纳米颗粒的 XRD 图谱

表 3 Co_3O_4 纳米颗粒的峰位置 2 θ ,半高宽(2 ω)^h,积分宽度(β)^h, 以及(2 ω / β)^h β_c^h 和 β_c^h 值

2 <i>θ /</i> (°)	hkl	(2ω) ^h /(°)	(β) [*] /(°)	(2ω/β) ^h	$\boldsymbol{\beta}^h_{\mathrm{c}}$	$oldsymbol{eta}_{ ext{G}}^{h}$
31.140	220	0.283	0.369	0.7669	0.2243	0.2081
36.717	311	0.301	0.403	0.7469	0.2706	0.2056
38.416	222	0.291	0.380	0.7658	0.2324	0.2131
44.680	400	0.328	0.457	0.7177	0.3479	0.1954
55.535	422	0.342	0.436	0.7844	0.2404	0.2657
59.231	511	0.355	0.494	0.7186	0.3747	0.2125
65.117	440	0.359	0.490	0.7327	0.3507	0.2307
77.218	533	0.400	0.556	0.7194	0.4204	0.2405
82.520	444	0.379	0.535	0.7084	0.4223	0.2136
93.986	731	0.519	0.705	0.7362	0.4969	0.3389
107.797	660	0.568	0.773	0.7348	0.5481	0.3686
111.144	555	0.498	0.714	0.6975	0.5866	0.2603

4.3 待测试样结构因素宽化

4.3.1 简化法

本实验中 Co₃O₄ 纳米颗粒由化学溶液法合成, 可认为基本无应变,因此可由 Scherrer 公式直接计 算其晶粒尺寸.扣除仪器本身几何宽化,也就是扣除 LaB₆ 标准样品的半高宽后,利用(33)式计算的结果 见表 4.

表4 利用 Scherrer 公式计算 Co_3O_4 纳米颗粒的晶粒尺寸 D

2 <i>θ/</i> (°)	hkl	2w/(°)	β⁄(°)	扣除仪器 宽化后的 2ω/(°)	扣除仪器 宽化后的 <i>β′</i> (゜)	由 2ω 计算的 D /nm	由β 计算的 D/nm
31.140	220	0.283	0.369	0.211	0.272	38.7	33.7
36.717	311	0.301	0.403	0.233	0.312	35.5	29.8
38.416	222	0.291	0.380	0.223	0.289	37.3	32.3
44.680	400	0.328	0.457	0.255	0.363	33.2	26.3
55.535	422	0.342	0.436	0.274	0.346	32.3	28.8
59.231	511	0.355	0.494	0.286	0.403	31.6	25.2
65.117	440	0.359	0.490	0.289	0.399	32.2	26.2
77.218	533	0.400	0.556	0.329	0.460	30.6	24.6
82.520	444	0.379	0.535	0.302	0.434	34.6	27.1
93.986	731	0.519	0.705	0.445	0.604	25.9	21.4
107.797	660	0.568	0.773	0.479	0.653	27.8	22.9
111.144	555	0.498	0.714	0.404	0.585	34.4	26.7

4.3.2 近似函数单线法

由表2 和表3 中列出的 LaB₆ 标准样品及 Co₃O₄ 纳米颗粒不同衍射晶面的 β_e 和 β_c 值(根据实验所 测得的半高宽 2 ω 和积分宽度 β ,应用经验关系式 (29)和(30)计算而得),并分别通过公式(13)和 (19)计算得到扣除仪器宽化因素后结构因素引起 的衍射线宽化 β'_e 和 β'_c 值,列于表 5 中. 然后利用公 式(33)和(34)分别求出 Co₃O₄ 纳米颗粒的晶粒尺 寸 D 和应变 *e*. 计算结果见表 5.

2 <i>θ/</i> (°)	$oldsymbol{eta}^{f}_{ ext{c}}$	$oldsymbol{eta}_{ ext{G}}^{ extsf{f}}$	D∕ nm	е
44.680	0.2919	0.1878	32.7	0.002
59.231	0.3173	0.2068	32.0	0.002
65.117	0.2946	0.2250	35.5	0.002
77.218	0.3547	0.2357	31.8	0.001
82.520	0.3575	0.2066	32.8	0.001
93.986	0.4223	0.3358	30.6	0.001
107.797	0.4653	0.3637	32.2	0.001
111.144	0.4926	0.2535	31.7	0.001

表 5 利用近似函数法计算 Co₃O₄ 纳米颗粒的晶粒尺寸 D 和 点阵应变 e

4.4 待测试样晶粒度与应变测量

假设 Co₃O₄ 纳米颗粒同时存在晶粒细化与点阵 畸变两种峰形宽化因素时,由 Co₃O₄ 纳米颗粒的衍 射峰位置 2 θ 和扣除仪器宽化后的积分宽度 β 见表 4) 根据公式 (47),让 β^2 tg² θ 对 $\beta/($ tg θ sin θ)作图.并 进行线性拟合,结果见图 5.因为其纵坐标截距为 16 e^2 斜率为 $K\lambda/D$,从而可以求得晶粒尺寸和点阵 应变分别为 D = 34.6 nm 和 e = 0.0014.

图 5 Co_3O_4 纳米颗粒的 $\beta^2 tg^2 \theta = \beta/(tg\theta sin\theta)$ 关系

4.5 测量结果比较

为了便于比较上述各种方法测定的 Co₃O₄ 纳米 颗粒尺寸的可靠性,图 6 给出了 Co₃O₄ 纳米颗粒的 扫描电镜相片.我们随机采集了 100 个颗粒的直径 值,对其尺寸分布进行了统计分析.分析结果表明, Co₃O₄ 纳米颗粒的平均直径约为 30.6 nm(标准偏 差为 4.15,相对标准偏差为 13.5%),如图 7 所示, 其尺寸分布基本符合 Gauss 分布.利用近似函数法 计算的晶粒尺寸(平均值 32.4 nm)与扫描电镜观察 的统计结果非常接近,大多数衍射线计算结果与统 计结果的差别在 7% 以内,仅有一条线得到的晶粒 尺寸相差较大(16%).而简化法计算的结果(平均 值 27.3 nm)差别相对较大.我们认为,这种差别的 原因主要来自于仪器几何宽度的影响.利用标准样 品并选取合适的函数,从而最大可能地扣除仪器几 何宽度的影响,才可能利用 X 射线衍射峰形宽化计 算得到较为准确的晶粒尺寸.目前,一些商业程序, 比如 TOPAS,可以不用标准样品校正仪器宽度,而 是通过已知的仪器参数计算并扣除仪器的几何宽 度,有效地简化了实验的过程.

图 6 Co₃O₄ 纳米颗粒的扫描电镜相片

图 7 Co₃O₄ 纳米颗粒的尺寸分布

5 结论

本文介绍了利用 X 射线衍射峰形宽化测量纳 米颗粒晶粒尺寸和应变的基本原理和主要方法.以 Co₃O₄ 纳米颗粒为例 给出了各种方法的计算结果, 并与扫描电镜观察的统计结果进行了比较.结果表 明,为了得到较为精确的晶粒尺寸,需要充分考虑仪 器的几何宽度.近似函数法正是由于较好地去除了 仪器的宽化因素,得到的晶粒尺寸与电镜观测的统 计结果非常接近(误差在10%以内).利用简化法计 算得到的晶粒尺寸虽然相对来说误差较大,但是由 于其简便性,仍然在实际工作中,特别是在不同条件 下制备试样并进行相对比较时,被广泛应用.

参考文献

- [1] Klug H P, Alexander L E. X-ray diffraction procedures for polycrystalline and amorphous materials ,2nd edition. New York :John Wiley & Sons ,1974. Chapter 5 and 9
- [2] Langford J I. J. Appl. Cryst. , 1978 , 11 : 10
- [3] de Keijser T H, Langford J I, Mittemeijer E J et al. J. Appl. Cryst. , 1982 , 15 : 308
- [4] Scherrer P. Nachr. Ges. Wiss. Gottingen , 1918 , 2:98

·物理新闻和动态 ·

- [5] Wilson A J C. X-ray optics. London : Methuen , 1949. 37 ; Proc. Phys. Soc. , 1963 , 81 :41
- [6] Ruland W. Acta Cryst. , 1965 , 18:581
- [7] Schoening F R L. Acta Cryst. , 1965 , 18:975
- [8] Halder N C , Wagner C N. J. Acta Cryst. , 1966 , 20:312
- [9] 梁敬魁. 粉末衍射法测定晶体结构(上册). 科学出版社, 2003. 第四章

004004004004004004004004004004004004

控制锰酸盐的绝缘体 - 金属相变

Pr_{1-x}Ca_xMnO₃及其类似的钙钛矿结构化合物被称为巨磁电阻锰酸盐. 它们展现出许多奇妙的物性(包括电荷有序、条纹 相、轨道有序、磁有序、半金属性、相分离和超巨磁电阻等),近十年来一直吸引着凝聚态物理工作者的研究兴趣. 奇妙的物理 现象起源于材料中晶格、电荷、轨道以及自旋自由度的相互作用,而在相近的能量尺度上,这些相互作用的竞争决定了系统的 基态. 其中由温度、磁场、压力以及光辐照扰动所引起的绝缘体 – 金属相变最为引人关注. 最近,来自美国 Lawrence Berkeley 国 家实验室的 Rini 等,通过直接激发 Pr_{1-x}Ca_xMnO₃中的 71 meV(17THz)声子模式,实现了绝缘体相和金属相之间的超快速切 换. 在从稳定的绝缘相向亚稳金属相(非平衡)转变的过程中,观察到了 5 个数量级的电阻瞬态下跌.

与光辐照直接激发电子的情况不同 ,Rini 等声子模式激发的结果是晶格大幅度的动态畸变.借助于几何"容忍因子"*r* = (Pr—O)键长 / $\sqrt{2}$ Mn—O 键长),可以定量地描述立方晶格的正交畸变.当实验者以 17.5μn(相当于 71 meV)的中红外 高能脉冲辐照样品时,首先激发的是 Mn—O 键的伸缩模式. Mn—O 键大幅度的伸缩直接调制容忍因子.而正是容忍因子控 制了在铁磁金属相和顺磁绝缘相之间的竞争.能带电子从 Mn³⁺离子向 Mn⁴⁺ 的跳跃转移,需经 O(2p)电子的中介. Mn—O—Mn 键角 θ 可因 Γ 的减小而减小(对于立方对称 $\Gamma = 1$ $\theta = 180°$),进而减小上述跳跃转移的几率.专家认为,Rini 等 关于 Mn—O 声子模式的成功实验,将有助于 Cu—O 高温超导体的机理研究.

(戴闻 编译自 Nature 2007 449 72 和 Editor's Summary)

北京欧普特科技有限公司严格参照国际通常规格及技术指标,备有完整系列的精密光学零部件(备有产品样本供参考) 供国内各大专院校 科研机构,试验室随时选用,我公司同时可为您的应用提供技术咨询.我公司可以提供美国及欧洲产的优 质红外光学材料,如硒化锌,硫化锌,多光谱硫化锌等.

- 光学透镜:平凸、双凸、平凹、双凹、消色差胶合透镜等.
- 光学棱镜 法种规格直角棱镜 及其他常用棱镜.
- 光学反射镜 法种尺寸规格的镀铝 ,镀银 ,镀金 ,及介质反射镜. 直径 5mm—200mm.
- 光学窗口 :各种尺寸规格 材料的光学平面窗口 ,平晶. 直径 5mm—200mm.
- 紫外石英光纤 进口紫外石英光纤 SMA 接口光纤探头 紫外石英聚焦探头.
- 国产滤光片 规格为直径 5mm—200mm.(紫外,可见 红外)及窄带干涉滤片.
- ●进口光学滤光片:长波通滤光片/短波通滤光片 波长 400—1000nm 窄带干涉滤光片

地址 北京市海淀区知春路 49 号希格玛大厦 B 座#306 室 电话 010 - 88096218/88096217 传真 010 - 88096216 网址 :www.goldway.com.cn E-mail kevinchen@goldway.com.cn shinan@goldway.com.cn zengan@goldway.com.cn 联系人 陈锵先生 施楠小姐 曾安小姐 郑海龙先生