高分辨率电子能量损失谱在材料科学中的应用*

王乙潜^{1,†} 杜庆田¹ 丁艳华¹ 梁文双¹ 段晓峰² (1 青岛大学国家重点实验室培育基地 青岛 266071)

(2 中国科学院物理研究所 北京凝聚态物理国家实验室 北京 100190)

摘 要 简要介绍了 FEI Titan80—300STEM 扫描透射电镜中装配的 Wien-filter 型能量单色器 (monochromator). 文章特别指出,装配有能量单色器的 FEI Titan80—300STEM 扫描透射电镜,可以直接给出高能量分辨率(~0.1eV) 的电子能量损失谱.利用高分辨电子能量损失谱,在高能损失区,对于 K 或 L 能级自然宽度(natural width of energy level)小于 0.5eV 的元素,可以获得更细致的的近限精细结构(energy-loss near-edge structure),更有利于解析其电子 结构;在低能损失区,可以用于精确地确定半导体材料的带隙(bandgap)以及 p 型掺杂引起的带隙能的变化. 关键词 高分辨电子能量损失谱,近限精细结构,半导体带隙

Application of high-resolution electron energy-loss spectroscopy in materials science

WANG Yi-Qian^{1,†} DU Qing-Tian¹ DING Yan-Hua¹ LIANG Wen-Shuang¹ DUAN Xiao-Feng² (1 The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071, China)

(2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract The Wien-filter type monochromator installed in an FEI Titan 80—300 STEM scanning transmission electron microscope is briefly introduced. It is shown that electron energy-loss spectroscopy (EELS) with an energy resolution better than 0.1 eV can be achieved using the monochromated transmission electron microscope. In the core-loss region, for elements with natural widths of the K-and L-shell energy levels smaller than 0.5 eV, finer near-edge structures can be obtained using the monochromator, and it is also helpful for the understanding of electronic structure. In the low-loss region, high-resolution EELS can be used to determine the bandgaps of semiconductors and the energy shift in the bandgap due to p-type doping.

Keywords high-resolution electron energy-loss spectroscopy, energy-loss near edge structure, bandgap

1 引言

电子能量损失谱(electron energy-loss spectroscopy, EELS)是通过探测透射电子在穿透样品 过程中所损失能量的特征谱图来研究材料的元素组 成、化学成键和电子结构的微分析技术^[1,2].通过 分析入射电子与样品发生非弹性散射后的电子能量 分布,我们可以了解材料内部化学键的特性、样品中 的原子对应的电子结构、材料的介电常数等. EELS 可分为低能损失和高能损失两部分. 低能损失部分 出现在能量损失小于 50eV 的区域,主要来源于等 离子激发和外壳层电子的带内/带间跃迁,反映了材料的电学和光学性质;而高能损失部分则反映内壳层电子的激发,在谱线平滑背底上突起的电离边(ionization edge)对应的能量损失值近似等于相应原子壳层的电子结合能,电离边的精细结构则反映出未占据态的能态密度.

^{*} 国家自然科学基金(批准号:10974105)、山东省优秀中青年科学家科研奖励基金(批准号:BS2009CL005)、山东省杰出青年基金 (批准号:JQ201002)、青岛大学引进人才科研启动基金(批准号:06300701)资助项目

²⁰¹⁰⁻⁰³⁻¹⁶ 收到

[†] 通讯联系人. Email: yqwang@qdu. edu. cn

最近,配有能量单色器(monochromator)的透射 电镜的发展使 EELS 的能量分辨率达到 0.1eV^[2],使 得在纳米尺度下分析半导体材料的能隙以及材料精 细的电子结构成为可能,从而大大拓展了 EELS 的应 用范围.能量单色器可分为 Wien 型,Ω 型及 Mandoline 型.本文将重点介绍装配在 FEI 公司生产的Titan 80—300STEM 扫描透射电镜中的 Wien-filter 型能量 单色器及其在研究材料中某些元素的精细电子结构 以及确定半导体带隙能中的应用.

2 方法和结果

要想获得高分辨率的电子能量损失谱,我们首 先要了解电子能量损失谱的谱线变宽(broadening) 机制.电子能量损失谱的谱线变宽主要有三种机制: (1) 初态寿命谱线展宽(initial state lifetime broadening);(2) 终态寿命谱线展宽(final state lifetime broadening);(3) 仪器展宽 (instrumental broadening).不同材料初态、终态的寿命不同,相应的展宽 无法改变或消除;而仪器展宽来自电子源的能量色 散和谱仪有限的分辨率,因此可以改善.改善仪器展 宽的方法之一是在电子枪(electron gun)下面安装 一个能量单色器(monochromator). FEI 公司在新 推出的 Titan80-300STEM 扫描透射电镜中便安 装了 Wien-filter 型单色器, 能量单色器的工作原理 如图 1(a)所示,在垂直于光轴的方向上叠加互相垂 直的静电场 E1 和磁场 B,速度 V 满足 Wien 条件 $(E_1 = V \cdot B)$ 的电子将沿着直线光轴运动,在能量选 择狭缝处形成线状聚焦(line focus).为了便于合 轴,在能量选择狭缝处最好能得到点聚焦(point focus).因此,在FEI Titan80—300STEM 电镜中, 在单色器中加入了一个四极电场(quadrupole, E_2),使得线聚焦变为点聚焦,如图 1(b)所示.图 1 (c)为 FEI Titan80—300STEM 中的 Wien-filter 型 单色器的实物图.该单色器呈圆柱型,其直径为 60mm,高度为 50mm.

图 2 (a),(b)和(c)分别是常规透射电镜的微米 束模式(microprobe mode)、配有能量单色器以及配 有能量单色器和能量选择狭缝的光路图.图 2(d), (e),(f)分别是上面三种模式对应的光斑形状.由图 2(a),(b)和(c)可以看出:第一个电子束交叉点 (cross-over)所处的位置不同,加入单色器的电子束 交叉点在单色器的出口位置处,而常规的场发射透 射电镜第一个电子束交叉点在加速极的下方.另外,

图 1 (a) Wien 型单色器的工作原理示意图^[3];(b) 在 FEI Titan80—300STEM中,四极电场使线聚焦变为点聚焦^[3]; (c) Wien-filter 型单色器的实物图^[4]

它们形成的光斑形状也不同:常规的场发射透射电 镜在微米束模式下,形成的光斑是亮度分布均匀的, 而加了能量单色器后(见图 2(b)),束斑变成一条能 量色散的直线,且能量沿直线呈高斯(Gaussian)分 布.若在第一聚光镜光阑处加上能量选择光阑(见图 2(c)),则直线光斑只被选择了一部分,其能量相干 性更好,可以获得更高分辨率的电子能量损失谱.

图 2 (a)和(d)为常规的场发射透射电镜中微米束模式的光路 图及其形成的光斑;(b)和(e)为加入能量单色器后的光路图及 其形成的光斑;(c)和(f)为加入能量单色器及能量选择狭缝后 的光路图及其形成的光斑

在 FEI Titan80—300STEM 透射电镜中,加入 单色器及能量选择狭缝后,能量分辨率可得到大大 提高.图 3 是在 300kV下,采用不同的曝光时间所 得到的零损失峰.通常我们把零损失峰的半高宽 (full width at half maximum, FWHM)定义为电子 能量损失谱的能量分辨率(在图3中用双向黑箭头

图 3 (a)-(f) 为在不同曝光时间的条件下得到的电子能量损失谱分辨率

标示).由图 3 可以看出:随着曝光时间的增加,能量 分辨率有所降低.即使曝光时间为 100s(见图3(f)), 能量分辨率仍小于 0.15eV.在 1s 的曝光时间(见图 3(d))条件下,电子能量损失谱的分辨率可以达到 0.1eV,这必将极大地拓宽电子能量损失谱在材料 科学中的应用范围.

对于高能损失(core-loss)来说,能量分辨率主要取决于内壳层(inner shell)能级的自然宽度.由图 4可以看出原子序数与能级的自然宽度之间的关系^[5]:对于原子序数 Z<15 的 K 电离边或原子序数 Z<30 的 L_{2.3}电离边,其自然宽度都小于0.5eV;此外,还可以看出能量损失与自然宽度之间的关系^[5]:对于能量损失低于 2000eV 的 K 电离边以及能量损失低于 1000eV 的 L 电离边,其自然宽度小于 0.5eV.对于低能损失(low-loss)来说,能量损失小于 2eV 的谱线结构非常难以探测.这是由于它们被零损失峰的尾巴所掩盖.然而,能量分辨率的提高可以帮助解决这些难题.

图 5 是在能量单色器关闭 (Mono OFF) 和开启 (Mono ON)的状态下,获得的二氧化钛(金红石)的 Ti- $L_{2,3}$ 的电离边(图 5(a))和 O-K(图 5(b))的电离边^[6]. 由图 5(a)可以看出,在能量单色器开启的状态下得到 的 Ti- $L_{2,3}$ 电离边,其近限精细结构更加细致.在二氧化 钛(TiO₂)中,每个钛原子被 6 个氧原子所包围,且 Ti-O八面体稍微有些扭曲(distortion).八面体配位场 (octahedral ligand-field)导致 d 能态的五重简并(five

图 5 金红石(TiO₂)的(a)Ti-L_{2,3}电离边和(b)O-K 电离边^[6]

degenerated states)发生了退简并,即 d 轨道分裂成二 重的 e_g 轨道和三重的 t_{2g} 轨道.由图 5(a)可以看出:在 能量单色器开启(Mono ON)的状态下,八面体晶体场 所导致 $L_a - e_g$ 的进一步分裂(图 5(a)中用箭头标出) 清晰可见,但在单色器关闭(Mono OFF)的状态下,该 劈裂现象没有观察到.对于 O-K 电离边(见图 5(b)), 在能量单色器开启和关闭的状态下,两条谱线差别不 大,但与 Ti-L_{2.3}相对应的晶体场劈裂现象在 O-K 电离 边中则可以见到.

图 6 是 FEI 公司的 Lazar 和 Freitag^[7]利用 FEI Titan80—300STEM 扫描透射电镜,在能量单色器 开启的模式下分别从硅(Si)、二氧化硅(SiO₂)和氮 掺杂的二氧化硅(SiO_{2-x}N_x)中获得的 Si-K 电离 边(峰位约在 1860eV),其中每个谱图的曝光时间为 8s. 三者的 Si-K 电离边的精细结构差异清晰可见, 这主要由于硅的化学环境和成键状态发生了改变.

图 6 Si, SiO₂和 SiO_{2-x}N_x中 Si-K 电离边的近限精细结构^[7]

Lazar 等人^[8]利用能量单色器系统地研究了立 方和六方相氮化镓(GaN)的带隙能.图7(a)是在像 模式下获得的立方和六方GaN的低能损失谱.实验 所使用的能量分辨率为0.25eV,会聚角为 100mrad.为了求得带隙能,先将图7(a)中0eV以 下的部分进行镜像(mirroring),然后从0eV以上的 谱线中减去镜像的部分,所得到的结果如图7(b)所 示.由图7(b)可以求出立方相GaN的带隙能为 3.27eV,而六方相GaN的带隙能为3.43eV.对于 立方相 GaN,其带隙能区域附近的谱图如图 7(c)所示.该曲线以 3.2eV 为界限,小于 3.2eV 的曲线符 合间接能隙的公式 $I = I_0 + c(E - E_b)^{1.5}$;而大于 3.2eV的曲线符合公式 $I = I_0 + c(E - E_b)^{0.5}$.公式中 E代表能量损失, E_b 代表带隙能, I_0 和 c均为常数.

图 8 是在扫描透射(scanning transmission electron microscopy, STEM)模式下,Kujawa 等 $\Lambda^{[4]}$ 利用能量单色器对 GaAs/GaAlAs 多层膜中的 GaAs和 Ga_{0.5}Al_{0.5}As的带隙能进行了研究.GaAs/ GaAlAs多层膜的结构如图 8 左上角插图所示,该 图为高分辨扫描透射电镜图像(或称 *Z*-衬度像),图 像的衬度(contrast)与原子序数(*Z*)的平方成正比. 由低能电子能量损失谱可以看出,GaAs和 GaAlAs 带隙能的起始点(onset)不同.放大的带隙能区域的 电子能量损失谱图如图 8 的右上角所示.由该谱图 可以求得 GaAs 的带隙能为 1.45eV,Ga_{0.5}Al_{0.5}As 的带隙能为 1.75eV.由此可见,p型掺杂(Al)引起 了 GaAs带隙能的变化.

图 8 利用高分辨电子能量损失谱确定 GaAs 和 GaAlAs 的带隙能^[4].图中左上角插图为 GaAs/GaAlAs 多层膜的高分辨扫描透射电镜图像,右上角插图为放大的低能损失谱部分

图 7 (a) 立方和六方相氮化镓的低能损失谱图 ^[8];(b) 扣除零损失峰后得到的谱图 ^[8];(c) 立方相 GaN 的带隙能区域以 3.2eV 为界限上、下两部分曲线分别符合不同的公式 ^[8]

3 结论

综上所述,提高电子能量损失谱分辨率,其优越 性主要体现在两方面:(1)在高能损失区,对于能级 的自然宽度小于 0.5eV 的元素的电离边,可以得到 更细致的近限精细结构,对解析其电子结构更加有 利.配有能量单色器的场发射透射电镜与常规的 Schottky 场发射透射电镜(能量发散度 $\Delta E = 0.6 - 0.8eV$)相比,性能更加优越;(2)在低能损失区,由 于能量单色器可以得到尖锐且对称的零损失峰以及 很高的能量分辨率,因此可用于精确地确定较小的 能隙(<3eV).这与冷场发射枪(能量发散度 $\Delta E = 0.3 - 0.5eV$)的不对称零损失峰相比,大大拓展了 低能电子能量损失谱(Valence EELS)的应用范围.

目前,清华大学北京电镜中心已安装了一台配 有球差矫正器(Cs-corrector)的 FEI Titan80—300 TEM/STEM 场发射透射电镜,但没有配能量单色器.相信在不久的将来,配有单色器的扫描透射电镜将进入我国,我们也必将在电子显微学、物理学、材料科学、纳米科学开拓出新的研究领域.

参考文献

- [1] McCulloch D G, Brydson R. J. Phys.: Condens. Matter, 1996, 8: 3835
- [2] Serin V, Colliex C, Brydson R et al. Phys. Rev. B, 1998, 58: 5106
- [3] Handbook, Tecnai on-line help manual-monochromator, FEI, 18
- [4] Kujawa S, Freitag B, Hubert D. Microscopy Today, 2005, 13(4): 16
- [5] Krause M O, Oliver J H. J. Phys. Chem. Ref. Data, 1979, 8(2): 329
- [6] Mitterbauer C, Kothleitner G, Hofer F et al. Microsc. Microanal., 2003, 9 (Suppl. 3): 86
- [7] Application note handbook, Application results on the TitanTM 80—300 platforms, Tools for Nanotech, FEI, 2007, 18
- [8] Lazar S, Botton G A, Wu M Y et al. Ultramicroscopy, 2003, 96: 535