新型铁基超导体专题

编者按 自日本科学家在具有层状结构的铁基化合物中发现超导电性以来,由于其较高的转变温度,物理上与铜基超导体既有相似之处,又有新的特点,在国际上迅速掀起了铁基超导研究热潮.我国科学家在这一研究领域取得了若干突破性进展,本刊曾于 2009 年邀请部分国内科学家进行过专题报道(38卷,9期).近期铁基超导体的研究仍是方兴未艾,新材料、新现象和新理论不断涌现.为此,本刊再次组织国内部分科学家就铁基超导体若干方面的最新进展撰写了 5 篇综述性报道,以期反映当前这一领域的研究状况.

新型铁基超导体材料的研究进展*

郭建刚¹ 金士锋¹ 王 刚¹ 王顺冲¹ 朱开兴¹ 周婷婷¹ 赖晓芳¹ 贺 蒙² 陈小龙^{1,†} (1 中国科学院物理研究所 北京凝聚态物理国家实验室 功能晶体研究与应用中心 北京 100190) (2 国家纳米科学中心 北京 100190)

摘 要 文章主要介绍了碱金属插层法合成新型铁基超导体的研究进展.通过采用碱金属 K 对 FeSe 层状材料插层的方法,得到了一种新型的铁基超导体 K_{0.8} Fe_{1.7} Se₂,并对该材料的晶体结构与物性进行了研究.结果表明,该化合物的超导转变温度达到 30K,这是 FeSe 体系在常压下的最高超导转变温度.同时,观察到该体系中存在转变温度为 43K 的超导相,但未得到纯相.通过磁性元素 Co 的掺杂研究,进一步加深了对 K_{0.8} Fe_{1.7} Se₂ 体系超导演化规律的认识.该超导体的发现对深入认识铁基超导体的超导机理,探索具有更高超导转变温度的铁基超导体具有重要意义. 关键词 层状化合物,碱金属插层,铁基超导材料

Recent developments of novel Fe-based superconductors

GUO Jian-Gang¹ JIN Shi-Feng¹ WANG Gang¹ WANG Shun-Chong¹ ZHU Kai-Xing¹ ZHOU Ting-Ting¹ LAI Xiao-Fang¹ HE Meng² CHEN Xiao-Long^{1,†} (1 Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China) (2 National Center for Nanoscience and Technology, Beijing 100190, China)

(2 National Center for Nanoscience and Technology, Beijing 100190, China)

Abstract This paper presents recent progress in the study of novel Fe-based superconductors. We report a new Fe-based superconductor $K_{0.8}$ Fe_{1.7} Se₂, which was synthesized by intercalating the alkali-metal K into FeSe layers. Its superconducting transition temperature is 30K, which is the highest value at ambient pressure among the FeSe-based materials. Meanwhile, a superconducting phase with a transition temperature of 43K also emerges in this system, but the effort to make a pure sample composed of this 43K phase has not yet been successful. Furthermore, the effect of magnetic Co-doping on the superconducting behavior is also reported. The results may have important implications for understanding the superconducting mechanism and exploring these new Fe-based superconductors.

Keywords layered compounds, alkali-metal intercalation, Fe-based superconductors

¹ 引言

^{2006—2007}年,日本东京工业大学的 Hosono 研究组分别报道了 LaFePO 和 LaNiPO 体系的超导

^{*} 国家自然科学基金(批准号:90922037;51072226)资助项目 2011-07-05收到

[†] 通讯联系人. Email:chenx29@aphy.iphy.ac. cn

电性,但因其超导转变温度 T。较低(2-7K),当时 并未引起人们的广泛重视, 2008年2月, 该小组报 道在 LaFeAsO 体系中发现了高达 26K 的超导转 变[1],这一突破性成果立刻引发了人们对该体系的 强烈关注,随后国内外许多研究组相继报道了一系 列具有超导电性的层状铁基化合物,此类材料被统 称为铁基超导体.目前,根据母体化合物的成分和晶 体结构,大致可以将铁基超导体分为以下4个体系 (对应的晶体结构示意图见图 1):(1)"1111"体系, 成员包括 LnOFePn(Ln=La,Ce,Pr,Nd,Sm,Gd, Tb, Dy, Ho, Y; Pn = P, As) 以及 AFeAsF(A = Ca, Sr)等化合物^[2],空间群为 P4/nmm,具有 CuHfSi₂ 型晶体结构,该体系是由(LnO)+层与反萤石型 $(FePn)^{-}$ 层沿晶体学 c 轴交替堆垛而成:(2)"122" 体系,成员包括 AFe₂As₂(A=Ba,Sr,K,Cs,Ca,Eu) 等^[3],空间群为 I4/mmm,具有 ThCr₂Si₂ 型晶体结 构,该体系由A离子层与反萤石层(FeAs)一沿晶体 学c轴交替堆垛而成:(3)"111"体系,成员包括 AFeAs (A=Li,Na)等^[4],空间群为 P4/nmm,具有 Cu₂Sb型晶体结构,该体系也是由A离子层与反萤 石层(FeAs)⁻沿晶体学 c 轴交替堆垛而成,但其 (FeAs)⁻层的相对位置以及层间 A 离子数量都与 122 体系不同;(4)"11"体系,成员为FeSe^[2],空间群 为 P4/nmm,具有典型的反 PbO 型晶体结构,该二 元化合物仅由反萤石的(FeSe)层沿 c 轴堆垛而成. 图 1 是几种典型铁基超导体的结构示意图,从图中 可看出,它们具有共同的结构特点,即都存在 Fe 的 平面四方网格,As(Se)原子等距离地排列在 Fe 平 面的上方和下方,形成 FeAs₄(FeSe₄)共边四面体. 这种特殊的晶体学结构导致 Fe 的 5 个 3d 轨道都与 As(Se)发生轨道杂化,从而都贡献出载流子,在铁 基超导体中,FeAs(Se)层是物性决定层,FeAs(Se) 层之间的插入层则提供载流子,即为电荷库层,对于 母体材料,层和层之间的电荷是平衡的,层间耦合作 用也比较弱.对电荷库层进行电子或空穴掺杂后,通 常电荷由电荷库层向物性决定层转移,对物性决定 层的性质进行调控,当掺杂达到一定程度后,就会出 现超导. 对铁基超导体中的物性决定层(如 FeAs 层)进行掺杂,同样能够诱导出超导电性.例如 Sefat 等人对 BaFe₂As₂ 进行 Co 掺杂,得到了高达 22K 的 超导转变温度[5],这是铜氧化合物超导体系中所不 具备的特点.

科学家在研究铁基体系的超导转变温度与晶体 结构的关系时发现,当 FeAs₄ 四面体越趋近于正四

图 1 4 种典型铁基超导体的晶体结构示意图

面体时,材料对应的超导转变温度就越高^[6].目前, 采用高压合成方法制备的 SmFeAsO_{1-∂}的超导转变 温度为 55K^[7],晶体结构研究表明,SmFeAsO_{1-∂}中 的 FeAs₄ 四面体趋近于正四面体,该转变温度大大 超过了 BCS 理论预测的极限.进一步对超导电子相 图所做的研究表明,铁基超导体与铜氧化物超导体 具有类似的特点:超导均出现在母相掺杂的基础上, 超导转变温度随掺杂量的变化关系呈现圆顶状曲 线;母相都是反铁磁材料;超导的出现都伴随着强的 自旋涨落等等.但是,二者也存在明显的差异:铜氧 化物超导体的母相为莫特绝缘体(Mott insulator), 而铁基超导体的母相则为差的金属态(bad metal); 前者在欠掺杂区域存在赝能隙,后者到目前还没有 观察到赝能隙的存在等等.

本文将以层间耦合较弱且具有特殊性质的 FeSe 层状材料为对象,简单介绍我们研究组在新型 铁基超导体的制备研究方面取得的部分进展^[8].

2 研究工作进展

Wu 研究组报道了在 FeSe_{0.88}样品中观察到了 T_c =8K 的超导转变^[2],该二元化合物不含有其他 铁基超导体中用来提供载流子的电荷库层.对于该 超导体系,最初是在含大量 Se 缺位的样品中观察到 超导特性,随后 Cava 研究组确认了非化学计量比的 FeSe_{0.99}化合物在 90K 时发生了从四方到正交的相 变,随后在更低的温度出现超导(T_c =8.5K)^[9],而 该样品中多余的 Fe 位于 FeSe 层的间隙位置.同 时,在配比为 FeSe_{0.97}的样品中没有观察到从四方 到正交的相变,也没有在更低温度下观察到超导转 变,该结果意味着超导的出现与 Se 的缺位程度和

FeSe4 四面体的扭曲存在着某种关联.同时,角分辨 光电子能谱(ARPES)的研究表明, FeSe体系在正 常态时存在非常强的电子关联效应[10],这一点也与 铁砷超导体系有明显的不同:此前的理论与实验证 明,铁砷体系是一种差的金属态,并不存在强的电子 关联效应,在高压和常温的条件下,原位的穆斯堡尔 谱实验表明,FeSeo og在31.0GPa内不存在静态的磁 有序结构,同时,超导转变温度随着压力的升高先上 升后下降,当压力为8.9GPa时,原位T。最高达 37K^[11]. 除了"物理压力"能显著提高 FeSe 的超导 转变温度,掺杂也能在一定程度上提高其T.目前 的实验结果表明,同族的 Te 掺杂能提高 T。至 15.2K^[12].因为同族元素的替代不能引入额外的载 流子,只会引入"化学压力",此类作用最直接的影响 是晶体结构和 FeSe4 四面体晶体学参数的变化. 总 之,FeSe的超导转变温度对"物理压力"和"化学压 力"都十分敏感,沿着调控晶体结构的思路,我们选 择碱金属插层的方法来制备新的 FeSe 层状化 合物.

K_{0.8}Fe_{2-y}Se₂(0.1≤y≤0.5)系列超导体的制 备和成相规律研究

在初期的实验中,我们选取了碱金属 K 和 FeSe 为反应原料,通过高温固相合成制备出了 KFe₂Se₂ 的 粉末样品.在该粉末样品的热磁曲线中并没有观察到 抗磁信号,结合 KFe₂Se₂ 粉末的衍射图谱研究,我们 发现碱金属 K 的插入导致大量游离性 Fe 的出现,Fe 的存在掩盖了 K_xFe_{2-y}Se₂ 中本应有的抗磁信号.以 上的成相特点促使我们制备 KFe₂Se₂ 单晶样品,以便 降低甚至完全排除游离 Fe 的干扰.通过自助溶剂的 方法,我们成功地制备出了 K_{0.8} Fe_{2-y}Se₂ 系列单晶样 品.游离的 Fe 被排出晶体,电感耦合等离子体发射光 谱(ICP-AES)结果表明,单晶的成分在 K_{0.8} Fe_{1.7}Se₂ 附近,这也是首个发现存在大量 Fe 空位的超导体.

我们进一步研究了 $K_x Fe_2 Se_2(0 \le y \le 1)$ 的成相 规律.如图 2 所示,当 K 的含量小于 0.8 时,所合成 的粉晶样品中包含了两相,即 $K_{0.8} Fe_{1.7} Se_2$ 和 FeSe. 当 K 的含量大于 0.8 时,所有的 FeSe 样品都已经 转化成了 $K_{0.8} Fe_{1.7} Se_2$ 相.对该体系成相规律的研 究不仅有利于更进一步地了解材料本身的晶体结构 及其演化规律,而且为探索具有更高超导转变温度 的样品提供了有一定参考价值的实践经验.

K_{0.8}Fe_{2-y}Se₂ (0.1 ≤ y ≤ 0.5)系列超导体的 结构表征

· 512 ·

由于 $K_{0.8}$ Fe_{2-y} Se₂ (0.1 $\leq y \leq 0.5$) 系列粉晶

图 2 K_xFe₂Se₂(103)和 FeSe(101)衍射峰强度随 K 插入量变 化的演化曲线

图 3 室温下 KFe₂Se₂ 样品的粉末 X 射线精修图谱, 插图是 K_{0.8}Fe_{1.7}Se₂ 的平均晶体结构示意图

样品具有相似的晶体学特征,在讨论晶体结构的时 候洗择 $\nu = 0.3$ (即 K_{0.8}Fe_{1.7}Se₂)作为代表来研究该 体系的晶体结构.我们采用 KCo₂Se₂ 的晶体结构^[13] 作为初始模型进行精修,根据 Ritveld 精修的结果, 其可信性因子 R_n 和 R_{wn}值分别收敛于 3.26% 和 5.15%,说明精修的结果是可信的.图 3是 KFe₂Se₂ 样品的粉末 X 射线衍射(XRD)精修图谱和 $K_{0.8}Fe_{1.7}Se_{2}$ 的平均晶体结构示意图. 化合物 $K_{0.8}$ Fe_{1.7}Se₂的空间群为I4/mmm,晶格常数 a=b=3.9136(1)Å, c=14.0367(7)Å. 与 FeSe 的晶格常数 a=b=3.77362(2)Å,c=5.52482(5)Å相比,可以推 断碱金属 K 已经成功地插入到了 FeSe 层之间.从 图 3 的插图中可以看出, K_{0.8} Fe_{1.7} Se₂ 晶体的基本结 构是由相互平行的(Fe₂Se₂)⁻ 层和K⁺离子层沿c 轴堆 垛而成. $(Fe_2Se_2)^-$ 层是物性决定层,由 FeSe₄ 四面体 共边连接所组成,和铁基超导体中 FeAs 层的作用类 似,K⁺离子层起到稳定晶体结构和提供载流子的作 用.在K:Fe:Se=1:2:2的情况下,合成出来的样品含 有两相,分别为 KFe₂Se₂ 和 Fe 杂相. 随后,利用 ICP-AES来确定晶体的化学成分,多次测量都可确认单晶 样品的化学元素比接近于 K:Fe:Se=0.8:1.7:2.需 要注意的是,在该晶体中,Fe 具有 15%的缺位,K 有 20%的缺位,而且在 K_x Fe_{2-y}Se₂(0.1 $\leq y \leq$ 0.5)系列 样品中都有相类似的结果.同时应该指出,前述的结 构只是平均结构,Fe 和 K 空位的不同有序可能导致 有不同的有序相.

2.3 K_{0.8}Fe_{1.7}Se₂体系的超导电性

图 4 是 K_{0.8} Fe_{1.7} Se₂ 单晶样品的电阻率随温度 的变化关系曲线,从图中可以看出,样品在高温区域 呈现半导体导电特性,在105K 左右时,样品的电阻 值出现极大值,该温度可能对应着某种磁相变,而不 仅仅是结构相变.继续降低温度,发现在 30K 左右, 样品的电阻值突然开始减小,在27.2K的时候电阻 减小为零.采用 90% T_c^{onset}—10% T_c^{onset} 的判断标 准,超导的转变温区 $\triangle T = 1.3$ K,表明样品的超导相 成分比较均匀.目前,这一超导转变温度是常压下 FeSe 基超导体所展现出的最高值,从图 5 中可以看 出,晶体的磁化曲线在高温区域呈现顺磁特征,样品 的磁化强度很弱,当温度降低至 31K 时,磁化强度 突然减小为负值,呈现出典型的抗磁特征,迈斯纳效 应开始出现.随着温度的继续降低,磁化强度的绝对 值继续增大,当温度降低到 10K 时,磁化强度的值 为-0.74emu/g,对应的超导相含量大约为 60%. 图 6 测量了不同磁场条件下,超导样品的电阻与温 度的变化关系曲线.随着磁场的增加,超导起始转变 温度是逐渐降低的,当磁场为9T时,对应的超导起 始转变温度大约为 26.2K. 把磁场和对应的转变温 度进行拟合,就得到 $dH_{c2}/dT = -4.1T \cdot K^{-1}, 应用$ Werthamer-Helfand-Hohenberg(WHH)方程:

 $H_{c2}(0) = 0.693[-(dH_{c2}/dT)]_{T_c} \cdot T_c$, 可以估算出在 0K 时本实验合成的超导样品的上临 界磁场为 77.8T.

2.4 K-Fe-Se体系 43K 超导相的探索研究

在研究 K_xFe₂Se₂ 的成相规律时,我们注意到成 分为 K_{0.64}Fe_{1.78}Se₂ 的样品除了出现 31K 的超导相之 外,还同时出现了另外 2 个可能的超导相,超导转变 温度分别为 43K 和 37K.随后在对 K_{0.8}Fe₂Se₂ 进行碱 土金属 Ba 掺杂实验时,虽然发现 Ba 不能进入晶格, 但它 却通 过形成 BaFe₂Se₃,改变了同时生成的 K_xFe_{2-y}Se₂ 的配比,导致名义成分为K_{0.4}Ba_{0.4}Fe₂Se₂ 样品的磁化率和电阻率曲线上都出现了更为明显的 43K 超导转变.同时在 K_{0.4}Ba_{0.4}Fe₂Se₂ 的基础上,随 着 Ba 含量的减少,43K 的超导转变越来越明显.至 此,可以初步认为存在超导转变温度为 43K 的超导

图 4 $K_{0.8}$ Fe_{1.7} Se₂ 超导单晶的电阻随温度变化关系曲线(图中 T_c^{onset} 为起始转变温度, T_c^{mid} 为转变中点的温度, T_c^{zero} 为零电阻 温度)

图 5 K_{0.8}Fe_{1.7}Se₂ 超导单晶的磁化强度随温度变化关系曲线

图 6 不同磁场下, K_{0.8} Fe_{1.7} Se₂ 超导单晶的电阻随温度变化关 系曲线(磁场方向平行于 *c* 轴)

相. 后来, Fang 和 Wang 等人也在铁含量较高的样品 中观察到了 43K 的超导转变, 但是超导含量也很 低^[14,15].为了进一步提高 43K 超导相的含量, 我们尝 试合成了一系列不同组分的K_xFe_{2-y}Se₂样品,并发现 当K含量过多时, 仅出现 30K 超导相, 而在K含量过 少时, 虽然存在 43K 的超导迹象, 但样品中同时出现 了较多的 FeSe 杂质. 经过多次实验, 最终发现组分为 K_{0,66} Fe_{1,68} Se₂ 的样品较有利于 43K 超导相的形成. 但

该样品 43K 的超导相含量还是较低,还可能存在成 分的不均匀,零电阻温度只有 25K. 图 7是 K_{0.66} Fe_{1.68} Se, 样品的磁化率随温度的变化关系曲线,可以看到, 样品在 43K 开始出现抗磁信号,但同时在 37K 和 25K 处都有一个不太明显的拐点. 图 8 是 Ko 66 Fe1 68 Se² 样品的电阻随温度的变化关系曲线,图中出现了 43K和37K两个转变温度,而零电阳温度为25K,这 些转变温度跟磁化率上的转变温度--对应,表明样 品中存在多个超导相.图 8 中的插图比较了 Ko 66 Fe1 68 Se2 和 K0 8 Fe2 Se2 的粉末衍射谱,从图中可以看 出,除含有少量的 FeSe 杂质外,K_{0.66} Fe_{1.68} Se₂的衍射 峰与 K_{0.8} Fe₂ Se₂ 几乎一致. 该结果表明,43K 和 31K 超导相在平均结构上可能保持一致,仅在 K 空位和 Fe 空位的排布上有所不同.这些超导相在 X 射线粉 末衍射的分辨率下看不出差别,需要通过投射电镜或 中子衍射来进一步进行区分,目前分离 43K 超导相 的工作仍在进行中.

图 7 K_{0.66} Fe_{1.68} Se₂ 的磁化率随温度的变化关系曲线(插图给 出了 10-60K 区域的超导转变细节)

图 8 K_{0.66} Fe_{1.68} Se₂ 的电阻随温度的变化关系曲线(插图 比较了 K_{0.66} Fe_{1.68} Se₂ 和 K_{0.8} Fe₂ Se₂ 的 XRD 谱)

2.5 K_{0.8}Fe₂Se₂ 超导体的 Co 掺杂研究

目前的研究普遍认为,磁性与超导有着密切的

联系,因此对 Fe 位进行含有未配对 3d 电子的过渡 族元素替代,不仅可以帮助了解该层对元素替代的 容忍度,更有助于深入研究超导电子的配对机制.如 Sefat 等人通过 Co 部分替代 Fe,分别在 LaFeAsO $(T_c=14.3K)^{[16]}$ 和 BaFe₂As₂ $(T_c=22K)^{[5]}$ 中发现 超导电性,如此高的临界温度表明,FeAs 层对无序 度具有相当大的容忍度.考虑到 Co 掺杂会引入强 的带内散射,该结果对 FeSe 基超导体本质的探讨 具有重要的启示作用.因此,我们合成了一系列的 K_{0.8}Fe_{2-x}Co_xSe₂ (0 $\leq x \leq 0.035$)样品,并对其输运 以及磁学性质进行了初步的表征和分析,以进一步 加深对 Fe 平面的无序度和电子配对机制的认识.

通过 X 射线粉末衍射,对合成的一系列 K_{0.8}Fe_{2-x}Co_xSe₂(0 $\leqslant x \leqslant$ 0.035)样品进行了物相分 析.实验发现,所有的衍射峰都可由 K_{0.8}Fe_{1.7}Se₂ 的 空间群 I4/mmm 指标化,这说明该系列样品均在仪 器分辨率极限条件下表现为单相.我们采用 ICP-AES 确定样品的实际组分,结果表明,所有样品均 具有 Fe 空位,而且 Co 的含量明显低于名义配比, 但是与名义组分近似成线性关系.

根据 K_{0.8}Fe_{2-x}Co_xSe₂(0 ≤ x ≤ 0.035) 电阻率随 温度的变化研究,发现随着 Co 含量的提高,超导转 变被迅速地抑制,当 $x \ge 0.03$ (实际的组分为K:Fe: Co:Se=0.39:0.84:0.005:1)时,高于5K时已观察 不到零电阻,可以估算出 $\Delta T_c / \Delta x$ 约等于 - 800K, 为已报道的铁基超导体中最快的抑制速度.根据 K_{0.8}Fe_{1.975}Co_{0.025}Se₂在较大温度范围内电阻率随温 度的变化,可以发现该系列掺杂样品具有类似的特 征,即所有样品在150K 左右均有一类似于半导体 一金属的转变,这可能是由于 Fe 空位有序的转变 导致的. 根据 $K_{0.8}$ Fe_{2-x} Co_xSe₂ (0 $\leq x \leq 0.035$)的 *M*-*T*曲线,可以发现,随着 Co含量的提高,超导临 界温度与超导含量均呈现下降的趋势,呈现出与 R-T曲线一致的规律.这种现象类似于在 FeSe 中 用 Co 部分替代 Fe 时出现的现象^[17],但是在 Co 掺 杂的 FeSe 中,核磁共振的研究观察到费米面嵌套 由于 Co 掺杂而被破坏,从而导致超导现象的消 失[18]. 然而角分辨光电子能谱研究表明,在 K_{0.8}Fe₂Se₂ 中 Γ 点 附 近 不 存 在 空 穴 型 的 费 米 口 袋[19],因而不存在费米面嵌套,因此,两个体系中超 导的抑制机理应该是不同的.这种强烈的抑制可能是 由于杂质散射,也可能是由于掺杂而引入的磁矩,从 而导致对库珀对的破坏,但这有待于进行更深入的实 验研究.

3 结束语

本文介绍了本研究组通过碱金属插层的方法, 成功地制备出了转变温度为 30K 的 K_{0.8} Fe_{1.7} Se₂ 超 导化合物.该超导转变温度是 FeSe 体系在常压下 的最高值.进一步改变原料的配比后,在该体系中又 同时发现了 43K 的高温超导相,但是相含量较少. 我们认为,通过进一步优化原料配比和工艺,很有可 能分离出这个高温超导相.通过磁性 Co 元素掺杂 研究,进一步加深了人们对 K_{0.8} Fe_{1.7} Se₂ 体系超导 演化规律的认识.

对该体系的后续研究表明,在 FeSe 层状化合物 中插入 Cs^[20],(Tl,K)^[21],Rb^[22,23]等元素,都可以合 成与 K_{0.8} Fe_{1.7} Se₂ 具有相同晶体结构的超导体,并且 能获得较高的超导转变温度,本超导体系的发现不仅 极大地丰富了 Fe 基超导家族,其更重要的物理意义 在于提供了电子配对类型的确切信息.目前 FeAs 体 系的电子配对类型没有统一的认识,在 FeAs 体系中, 不同结构的化合物有可能对应着不同的电子配对类 型,如 FeAs-1111 有可能是 d 波配对, FeAs-122 有可 能是s波对称.而对于该新型超导体系,虽然前期有 部分 d 波配对的理论,但目前发表的研究结果认为, $K_r Fe_{2-v} Se_2$ 的费米面是全电子型费米面^[24],电子是 通过 s 波对称来进行配对的, 它们的超导能隙是无节 点的 s 波对称^[25,26]. 目前通过 $K_x Fe_{2-y} Se_2$ 的 s 波对称 反向演绎铁基超导体电子配对机制的工作也正在进 行当中,国内外的研究者也在试图建立 FeAs 体系与 $K_rFe_{2-v}Se_2$ 体系两者之间的联系,通过对比的研究, 进一步加深了对铁砷体系电子配对类型的理解.目前 的研究表明,K_{0.8}Fe_{1.7}Se₂具有很多奇异的性质,尽管 已进行大量的理论和实验研究,超导体 K_{0.8} Fe_{1.7} Se₂ 还有许多性质有待进一步深入研究,如 Fe 含量对空 位有序及磁性的影响,c轴方向是否存在由 K 空位引 起的有序相以及这些有序相对物性的影响等等.

参考文献

- [1] Kamihara Y, Watanabe T, Hirano M et al. J. Am. Chem. Soc. ,2008,130:3296
- [2] Hsu F C, Luo J Y, Yeh K W et al. Proc. Natl. Acad. Sci. USA, 2008, 105:14262
- [3] Rotter M, Tegel M, Johrendt D. Phys. Rev. Lett. , 2008, 101: 107006
- [4] Wang X C, Liu Q Q, Lv Y X et al. Solid State Communications, 2008,148:538
- [5] Sefat A S, Jin R, McGuire M A et al. Phys. Rev. Lett. ,2008, 101.117004
- [6] Lee C H, Iyo A, Eisaki H et al. J. Phys. Soc. Jpn., 2008, 77: 083704
- [7] Ren Z A.Lu W, Yang J et al. Chinese Phys. Lett., 2008, 25: 2215
- [8] Guo J G, Jin S F, Wang G et al. Phys. Rev. B, 2010, 82: 180520(R)
- [9] McQueen T M, Williams A J, Stephens P W et al. Phys. Rev. Lett., 2009,103:057002
- [10] Tamai A, Ganin A Y, Rozbicki E et al. Phys. Rev. Lett., 2010,104:097002
- [11] Medvedev S, McQueen T M, TroyanI A et al. Nature Materials, 2009,8:630
- [12] Yeh K W, Huang T W, Huang Y L et al. Europhys. Lett., 2008,84:37002
- [13] Huan G, Greenblatt M. J. Less-Common Met., 1989, 156:247
- [14] Fang M, Wang H, Dong C *et al*. Europhys. Lett. ,2011,94:27009
 [15] Wang D M, He J B, Xia T L *et al*. Phys. Rev. B, 2011,83:
- $\begin{array}{c} 132502 \\ \hline 142502 \\ \hline 1425$
- [16] Sefat A S, Huq A, McGuire M A et al. Phys. Rev. B, 2008, 78:104505
- [17] Mizuguchi Y, Tomioka F, Tsuda S et al. J. Phys. Soc. Jpn., 2009,78:074712
- [18] Kotegawa H, Hara Y, Masaki S et al. Physica C, 2010, 470:426
- [19] Qian T, Wang X P, Jin W C et al. Phys. Rev. Lett., 2011, 106:187001
- [20] Krzton-Maziopa A, Shermadini Z, Pomjakushina E *et al*. Journal of Physics; Condensed Matter, 2011, 23:052203
- [21] Wang H D, Dong C H, Li Z J et al. Europhys. Lett., 2011, 93:47004
- [22] Wang A F, Ying J J, Yan Y J et al. Phys. Rev. B, 2011, 83: 060512(R)
- [23] Li C H, Shen B, Han F et al. Phys. Rev. B, 2011, 83:184521
- [24] Qian T, Wang X P, Jin W C et al. Phys. Rev. Lett., 2011, 106:187001
- [25] Zhang Y, Yang L X, Xu M et al. Nature Materials, 2011,10:273
- [26] Mou D, Liu S, Jia X et al. Phys. Rev. Lett. ,2011,106:107001